Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Multiple Regression" wg kryterium: Temat


Wyświetlanie 1-14 z 14
Tytuł:
Forecasting the demand for transport services on the example of a selected logistic operator
Autorzy:
Grzelak, Małgorzata
Borucka, Anna
Buczyński, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/223984.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
multiple regression
forecasting
cross-docking
Opis:
The number of shipments is growing every year, and as a result, new transport companies arise. The increase in competition requires from entrepreneurs to apply solutions increasing the level of services provided in order to best satisfy the needs of the customers. In this aspect, minimizing the time of deliveries is extremely important, and it can be achieved, for example, by implementing the cross-docking method. It consists in consolidation of cargo from different shipment locations that is delivered in the same direction. The main feature of the above method is to keep the labor intensity of operations and the interference in the cargo to the minimum. The purpose of this article is to present a research on a logistic operator working based on a cross-docking warehouse with a capacity significantly lower than the average daily quantity of shipments handled. This requires both effective management of the available space and minimizing the time spent on manipulation activities. Therefore, it is important to know the expected number of parcels that are planned to be received and shipped on a given day in order to coordinate the work in the warehouse. It is possible to estimate it by using mathematical methods of forecasting. One of them - the multiple regression - is presented in this article. The calculations were made on the basis of collected empirical observations concerning orders for pallet spaces placed by customers. Such a forecast allows for improvement of the processes of planning and management of the possessed resources. It allows to adjust the number of warehouse workers or vehicles necessary for internal transport to the expected needs. Ultimately, it may translate into more efficient functioning not only of the surveyed branch, but also of the whole network.
Źródło:
Archives of Transport; 2019, 52, 4; 81-93
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determinants of the experts evaluation of journals in economic sciences
Autorzy:
Osiewalski, Jacek
Osiewalska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/703006.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
scientometrics
multiple regression statistical model
model reduction
Opis:
In 2015 an important part of the official evaluation of Polish scientific journals was left to experts’ judgement. In this paper we try to establish which observable factors (with available data) are closely related to the outcome of experts’ evaluation of Polish journals in economic sciences. Using the multiple regression statistical model we show that only 5 variables (out of 17) significantly explain almost 50% of the empirical variance of the experts’ evaluation. The determinants of particular interest, not entering the formal criteria and not related to the impact on global science, are: the number of citations mainly in Polish journals and the affiliation with the Polish Academy of Sciences.
Źródło:
Nauka; 2017, 1
1231-8515
Pojawia się w:
Nauka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Migration of pollutants in porous soil environment
Migracja zanieczyszczeń w porowatym ośrodku gruntowym
Autorzy:
Szymański, K.
Janowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/204812.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
migration
landfill leachates
water pollution
linear multiple regression functions
migracja
odcieki składowiskowe
zanieczyszczenie wody
funkcja regresji
Opis:
Landfill leachate makes a potential source of ground water pollution. Municipal waste landfill substratum can be used for removal of pollutants from leachate. Model research was performed with use of a sand bed and artificially prepared leachates. Effectiveness of filtration in a bed of specific thickness was assessed based on the total solids content. Result of the model research indicated that the mass of pollutants contained in leachate filtered by a layer of porous soil (mf) depends on the mass of pollutants supplied (md). Determined regression functions indicate agreement with empirical values of variable m′f. The determined regression functions allow for qualitative and quantitative assessment of influence of the analysed independent variables (m′d, l, ω) on values of mass of pollutants fl owing from the medium sand layer. Results of this research can be used to forecast the level of pollution of soil and underground waters lying in the zone of potential impact of municipal waste landfill.
Odcieki składowiskowe stanowią potencjalne zanieczyszczenie wód gruntowych. Podłoże składowiska odpadów komunalnych może służyć do usuwania zanieczyszczeń zawartych w odciekach. Badania modelowe przeprowadzono z wykorzystaniem złoża piaskowego i sztucznie przygotowanych odcieków. Skuteczność filtracji złoża o określonej miąższości oceniano na podstawie zawartości suchej pozostałości. Wyniki przeprowadzonych badań modelowych wykazały, że o masie zanieczyszczeń zawartych w odcieku, filtrowanym przez warstwę gruntu porowatego (mf) decyduje masa doprowadzonych zanieczyszczeń (md), intensywność doprowadzonego odcieku (ω) oraz miąższość warstwy (l). Wyznaczone funkcje regresji wykazują, zgodność z liniowym modelem empirycznych wartości zmiennej m′f. Wyznaczone funkcje regresji pozwalają na oszacowanie jakościowego i ilościowego wpływu analizowanych zmiennych niezależnych (m′d, l, ω) na wartości masy zanieczyszczeń wypływających z warstwy piasku średniego. Wyniki tych badań mogą służyć do prognozowania stopnia zanieczyszczenia gruntu oraz wód podziemnych zalegających w strefie potencjalnego oddziaływania składowiska odpadów komunalnych.
Źródło:
Archives of Environmental Protection; 2016, 42, 3; 87-95
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cerchar abrasivity index prediction using multi-proxy data. A case study from the Sagdere Formation (Denizli Molasse Basin, Turkey)
Autorzy:
Dogruoz, Cihan
Powiązania:
https://bibliotekanauki.pl/articles/1853856.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ścieralność
węgiel brunatny
górotwór
cerchar abrasivity index
fuzzy inference system
Denizli Molasse Sagdere Formation
multiple regression
Opis:
The prediction of rock cuttability to produce the lignite deposits in underground mining is important in excavation. Moreover, the certain geographic locations of rock masses for cuttability tests are also significant to apply and compare the rock cuttability parameters. In this study, sediment samples of two boreholes (Hole-1 and Hole-2) from the Sagdere Formation (Denizli Molasse Basin) were applied to find out the cerchar abrasivity index (CAI), rock quality designations (RQD), uniaxial compressive strengths, Brazilian tensile strengths and Shore hardnesses. The Sagdere Formation deposited in the terrestrial to shallow marine conditions consists mainly of conglomerates, sandstones, shales, lignites as well as reefal limestones coarse to fine grained. A dataset from the fine grained sediments (a part of the Sagdere Formation) have been created using rock parameters mentioned in the study. Dataset obtained were utilized to construct the best fitted statistical model for predicting CAI on the basis of multiple regression technique. Additionally, the relationships among the rock parameters were evaluated by fuzzy logic inference system whether the rock parameters used in the study can be correlated or not. When comparing the two statistical techniques, multiple regression method is more accurate and reliable than fuzzy logic inference method for the dataset in this study. Furthermore, CAI can be predicted by using UCS, BTS, SH and RQD values based on this study.
Źródło:
Archives of Mining Sciences; 2020, 65, 4; 787-801
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Costs of facade systems execution
Koszty wykonania systemów elewacyjnych
Autorzy:
Leśniak, Agnieszka
Wieczorek, Damian
Górka, Monika
Powiązania:
https://bibliotekanauki.pl/articles/230531.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
system elewacyjny
szacowanie kosztów
model statystyczny
regresja wielokrotna
regresja krokowa
facade system
cost estimation
statistical model
multiple regression
stepwise regression
Opis:
Cost estimation in the pre-design phase both for the contractor as well as the investor is an important aspect from the point of view of budget planning for a construction project. Constantly growing commercial market, especially the one of public utility constructions, makes the contractor, at the stage of development the design concept, initially estimate the cost of the facade, e.g. office buildings, commercial buildings, etc., which are most often implemented in the form of aluminum-glass facades or ventilated elevations. The valuation of facade systems is of an individual calculation nature, which makes the process complicated, time-consuming, and requiring a high cost estimation work. The authors suggest using a model for estimating the cost of facade systems with the use of statistical methods based on multiple and stepwise regression. The data base used to form statistical models is the result of quantitative-qualitative research of the design and cost documentation of completed public facilities. Basing on the obtained information, the factors that shape the costs of construction façade systems were identified; which then constitute the input variables to the suggested cost estimation models.
Celem artykułu jest próba oszacowania kosztów wykonania systemów elewacyjnych obiektów użyteczności publicznej z wykorzystaniem modeli matematycznych, a w szczególności regresji wielorakiej oraz regresji krokowej postępującej. Dane użyte do budowy funkcji regresji zostały opracowane przez autorów na podstawie analizy dokumentacji projektowych, wykonawczych i kosztorysowych obiektów użyteczności publicznej. Opracowano bazę danych zawierającą główne czynniki wpływające na kształtowanie się kosztów wykonania systemów elewacyjnych obiektów użyteczności publicznej. Systemy elewacyjne realizowane były w formie fasad aluminiowo-szklanych oraz elewacji wentylowanych.
Źródło:
Archives of Civil Engineering; 2020, 66, 1; 81-95
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prioritization of barriers to lean implementation in Indian automotive small & medium sized enterprises
Autorzy:
Tiwari, R. K.
Tiwari, J. K.
Powiązania:
https://bibliotekanauki.pl/articles/406822.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
lean barriers
prioritization
Indian automotive SMEs
confirmatory factor analysis
multiple regression
analytic network process
super decision software
Opis:
Lean manufacturing has been the most deliberated concept ever since its introduction. Many organization across the world implemented lean concept and witnessed dramatic improvements in all contemporary performance parameters. Lean manufacturing has been a sort of mirage for the Indian automotive industry. The present research investigated the key lean barriers to lean implementation through literature survey, confirmatory factor analysis, multiple regression, and analytic network process. The general factors to lean implementation were inadequate lean planning, resource constraints, half-hearted commitment from management, and behavioral issues. The most important factor in the context of lean implementation in Indian automotive industry was inadequate lean planning found with the help of confirmatory factor analysis and multiple regression analysis. Further analysis of these extracted factors through analytic network process suggested the key lean barriers in Indian automotive industry, starting from the most important were absence of proper lean implementation methodology, lack of customer focus, absence of proper lean measurement system, inadequate capital, improper selection of lean tools & practices, leadership issues, resistance to change, and poorly defined roles & responsibilities. Though literature identifying various lean barriers are available. The novelty of current research emerges from the identification and subsequent prioritization of key lean barriers within Indian automotive SMEs environment. The research assists in smooth transition from traditional to lean system by identifying key barriers and developing customized framework of lean implementation for Indian automotive SMEs.
Źródło:
Management and Production Engineering Review; 2018, 9, 2; 69-79
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measuring agility of indian automotive small & medium sized enterprises (SMEs)
Autorzy:
Tiwari, Rupesh Kumar
Tiwari, Jeetendra Kumar
Powiązania:
https://bibliotekanauki.pl/articles/407171.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
exploratory factor analysis
multiple regression analysis
fuzzy logic
fuzzy integrated index
FII
fuzzy performance index
FPII
fuzzy ranking
Opis:
Indian SMEs are going to play pivotal role in transforming Indian economy and achieving double digit growth rate in near future. Performance of Indian SMEs is vital in making India as a most preferred manufacturing destination worldwide under India’s “Make in India Policy”. Current research was based on Indian automotive SMEs. Indian automotive SMEs must develop significant agile capability in order to remain competitive in highly uncertain global environment. One of the objectives of the research was to find various enablers of agility through literature survey. Thereafter questionnaire administered exploratory factor analysis was performed to extract various factors of agility relevant in Indian automotive SMEs environment. Multiple regression analysis was applied to assess the relative importance of these extracted factors. “Responsiveness” was the most important factor followed by “Ability to reconfigure”, “Ability to collaborate”, and “Competency”. Thereafter fuzzy logic bases algorithm was applied to assess the current level of agility of Indian automotive SMEs. It was found as “Slightly Agile”, which was the deviation from the targeted level of agility. Fuzzy ranking methodology facilitated the identification & criticalities of various barriers to agility, so that necessary measures can be taken to improve the current agility level of Indian automotive SMEs. The current research may helpful in finding; key enablers of agility, assessing the level of agility, and ranking of the various enablers of agility to point out the weak zone of agility so that subsequent corrective action may be taken in any industrial environment similar to India automotive SMEs.
Źródło:
Management and Production Engineering Review; 2019, 10, 1; 58-67
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling and Analysis of the Synergistic Alloying Elements Effect on Hardenability of Steel
Autorzy:
Sitek, Wojciech
Trzaska, Jacek
Gemechu, W. F.
Powiązania:
https://bibliotekanauki.pl/articles/2203932.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hardenability
artificial neural networks
multiple regression
steel alloy
modelling and simulation
hartowność
sztuczne sieci neuronowe
regresja wielokrotna
stal
modelowanie i symulacja
Opis:
The paper presents a methodology of modeling relationships between chemical composition and hardenability of structural alloy steels using computational intelligence methods, that are artificial neural network and multiple regression models. Particularly, the researchers used unidirectional multilayer teaching method based on the error backpropagation algorithm and a quasi-newton methods. Based on previously known methodologies, it was found that there is no universal method of modeling hardenability, and it was also noted that there are errors related to the calculation of the curve. The study was performed on large set of experimental data containing required information on about the chemical compositions and corresponding Jominy hardenability curves for over 400 data steel heats with variety of chemical compositions. It is demonstrated that the full practical usefulness of the developed models in the selection of materials for particular applications with intended performance in the area of application.
Źródło:
Archives of Foundry Engineering; 2022, 22, 4; 102--108
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of models for determining the traffic volume for the analysis of roads efficiency
Autorzy:
Spławińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/223741.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
roads
automatic traffic recorder
ATR
design hourly volume
DHV
multiple regression
artificial neural networks
drogi
automatyczny rejestrator ruchu
analiza efektywności dróg
sztuczna inteligencja
Opis:
The article presents different methods of estimating DHV, including traditional Factor Approach, developed Regression Models and Artificial Neural Networks models. As explanatory variables: quantitative variables (AADT and the share of heavy vehicles) as well as qualitative variables (the cross-section, roads class, nature of the area, the profile of seasonal variations, region of Poland and the nature of traffic patterns) were used. In addition, the results of preliminary analyses of the DHV estimates based on the maximum hourly volume derived from a few hours traffic measurement on weekdays where there is the greatest share of hours with the highest traffic volume in the year were presented. On the basis of comparisons of the presented methods, Multiple Regression Model was identified as the most useful.
Źródło:
Archives of Transport; 2015, 33, 1; 81-91
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermal power of the TS-300B refrigerator in the aspects of statistical research
Moc cieplna chłodziarki TS-300B w aspekcie badań statystycznych
Autorzy:
Nowak, B.
Łuczak, R.
Powiązania:
https://bibliotekanauki.pl/articles/219985.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
local cooling systems
direct action refrigerator
air conditioning in mines
evaporator thermal power
multiple regression
lokalne systemy chłodnicze
chłodziarka bezpośredniego działania
klimatyzacja kopalń
moc cieplna parownika
regresja wieloraka
Opis:
The article discusses the improvement of thermal working conditions in underground mine workings, using local refrigeration systems. It considers the efficiency of air cooling with direct action air compression refrigerator of the TS-300B type. As a result of a failure to meet the required operating conditions of the aforementioned air cooling system, frequently there are discrepancies between the predicted (and thus the expected) effects of its work and the reality. Therefore, to improve the operating efficiency of this system, in terms of effective use of the evaporator cooling capacity, quality criteria were developed, which are easy in practical application. They were obtained in the form of statistical models, describing the effect of independent variables, i.e. the parameters of the inlet air to the evaporator (temperature, humidity and volumetric flow rate), as well as the parameters of the water cooling the condenser (temperature and volumetric flow rate), on the thermal power of air cooler, treated as the dependent variable. Statistical equations describing the performance of the analyzed air cooling system were determined, based on the linear and nonlinear multiple regression. The obtained functions were modified by changing the values of the coefficients in the case of linear regression, and of the coefficients and exponents in the case of non-linear regression, with the independent variables. As a result, functions were obtained, which were more convenient in practical applications. Using classical statistics methods, the quality of fitting the regression function to the experimental data was evaluated. Also, the values of the evaporator thermal power of the refrigerator, which were obtained on the basis of the measured air parameters, were compared with the calculated ones, by using the obtained regression functions. These statistical models were built on the basis of the results of measurements in different operating conditions of the TS-300B refrigerator, both on the test stand in the manufacturer’s laboratory and in the workings of underground mines. The evaluation of the measurement data distributions, as well as an analysis of the basic descriptive statistics of the mentioned variables were carried out, determining their measures of central tendency, location, dispersion and asymmetry.
Artykuł dotyczy poprawy cieplnych warunków pracy w wyrobiskach górniczych kopalń podziemnych stosujących lokalne systemy chłodnicze. Rozważa się w nim skuteczność schładzania powietrza chłodziarką sprężarkową bezpośredniego działania typu TS-300B. Bardzo często, w wyniku niedotrzymania wymaganych warunków pracy wymienionego systemu chłodzenia powietrza, występują rozbieżności między prognozowanymi, a więc oczekiwanymi efektami jego pracy a rzeczywistością. Dlatego, dla poprawy skuteczności pracy tego systemu, opracowano, pod kątem efektywnego wykorzystania mocy chłodniczej parownika takiej chłodziarki, łatwe w zastosowaniu praktycznym kryteria jakości. Otrzymano je w postaci modeli statystycznych określających wpływ zmiennych niezależnych, tj. parametrów powietrza wlotowego do parownika (temperatury, wilgotności i wydatku objętościowego) oraz parametrów wody chłodzącej skraplacz (temperatury i wydatku objętościowego) na moc cieplną chłodnicy powietrza traktowaną jako zmienna zależna. Równania statystyczne opisujące pracę rozważanego systemu chłodzenia powietrza wyznaczono na podstawie wielorakiej regresji liniowej i nieliniowej. Utworzone funkcje zmodyfikowano poprzez zmianę wartości współczynników w przypadku regresji liniowej oraz współczynników i wykładników w przypadku regresji nieliniowej, przy zmiennych niezależnych. Otrzymano w ten sposób funkcje dogodniejsze w praktycznych wykorzystaniach. Korzystając z metod statystyki klasycznej oceniono jakość dopasowania funkcji regresji do danych eksperymentalnych. Porównano także wartości mocy cieplnych parownika chłodziarki otrzymane na podstawie pomierzonych parametrów powietrza z obliczonymi przy wykorzystaniu utworzonych funkcji regresji. Powyższe modele statystyczne utworzono na podstawie wyników pomiarów w różnych warunków pracy chłodziarki TS-300B, zarówno na stanowisku badawczym w laboratorium jej producenta jak i w wyrobiskach górniczych kopalń podziemnych. Dokonano oceny rozkładów danych pomiarowych oraz przeprowadzono analizę podstawowych statystyk opisowych wymienionych zmiennych określając ich miary przeciętne, pozycyjne, rozrzutu i asymetrii.
Źródło:
Archives of Mining Sciences; 2015, 60, 3; 715-728
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Models for determining annual average daily traffic on the national roads
Modele do wyznaczania średniego dobowego ruchu w roku na drogach krajowych
Autorzy:
Spławińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/231416.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
droga krajowa
zmienność
natężenie ruchu
dobowy ruch średni w roku
SDR
regresja wieloraka
sieć neuronowa sztuczna
national road
variability
traffic flow
annual average daily traffic
AADT
multiple regression
artificial neural network
Opis:
One of the basic parameters which describes road traffic is Annual Average Daily Traffic (AADT). Its accurate determination is possible only on the basis of data from the continuous measurement of traffic. However, such data for most road sections is unavailable, so AADT must be determined on the basis of short periods of random measurements. This article presents different methods of estimating AADT on the basis of daily traffic (VOL), and includes the traditional Factor Approach, developed Regression Models and Artificial Neural Network models. As explanatory variables, quantitative variables (VOL and the share of heavy vehicles) as well as qualitative variables (day of the week, month, level of AADT, the cross-section, road class, nature of the area, spatial linking, region of Poland and the nature of traffic patterns) were used. Based on comparisons of the presented methods, the Factor Approach was identified as the most useful.
Jednym z podstawowych parametrów opisujących ruch drogowy jest Średni Dobowy Ruch w roku (SDR). Jest on wykorzystywany do różnych celów między innymi do projektowania i planowania rozwiązań drogowych, obliczania hałasu drogowego czy do studiów wypadkowości. Jego nieprawidłowe oszacowanie i prognozowanie może prowadzić do licznych błędów, przykładowo do niewłaściwego doboru typów skrzyżowań i niewłaściwego ich projektowania czy do przeciążenia tras projektowanych na natężenie ruchu mniejsze niż to, które rzeczywiście może się pojawić. Uzyskanie dokładnych i wiarygodnych wielkości SDR możliwe jest jedynie na podstawie danych pochodzących z ciągłych automatycznych pomiarów ruchu. Niestety z większości odcinków drogowych nie ma takich danych, więc SDR musi być wyznaczany w oparciu o krótkie okresy wyrywkowych pomiarów. W tym celu najczęściej stosuje się metodę wskaźnikową.
Źródło:
Archives of Civil Engineering; 2015, 61, 2; 141-160
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The TDP method of seed yield component analysis in grain legume breeding
Autorzy:
Golaszewski, J
Idzkowska, M.
Milewska, J.
Powiązania:
https://bibliotekanauki.pl/articles/2044235.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
breeding population
path analysis
stem
treatment factor
multiple regression
yield component
grain legume
multivariate method
seed
two-dimensional partitioning method
Vicia faba
ontogenesis
plant height
fruiting node
broad bean
fodder pea
Pisum sativum
Opis:
The results of plant breeding trials with populations of fodder pea strains and broad bean hybrids were the basis of consideration on the interrelationship between some traits - the yield structure elements. Developed by Eaton, a relatively new method of yield component analysis called the two-dimensional partitioning method (TDP) was applied to analyse the data. The method, which combines multiple regression and ANOVA, allows for concise tabular presentation and simple interpretation of the distribution of traits in one direction and the sources of variance according to ANOVA model in the other direction. Additionally, the interpretation of the results was supported by such standard statistical techniques as ANOVA, simple and multiple regression and path analysis. The main components of pea yielding were plant height and the number of pods per plant. Among the analysed characters of broad bean the number of nodes with pods on the main stem, which turned out to be the determinant of broad bean yielding, might be strongly affected by environmental conditions. The number of nodes with pods might be considered a selecting character of high potential yielding of broad bean genotypes.
Źródło:
Journal of Applied Genetics; 1998, 39, 4; 299-308
1234-1983
Pojawia się w:
Journal of Applied Genetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An identification source of variation on the water quality pattern in the Malacca River basin using chemometric approach
Autorzy:
Hua, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/204612.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hierarchical cluster analysis
discriminant analysis
principal component analysis
multiple linear
regression analysis
Opis:
The Malacca River basin experienced river water pollution which caused a major deterioration to the ecosystems and environmental health. This study is carried out to assess the water quality data and identify the pattern of water pollution sources in the study area, and also to develop a predictive performance of water quality in the Malacca River basin. A chemometric approach using a combination of HCA, DA, PCA, and MLR, was applied into twenty water quality variables from nine sampling stations that were collected from January until December of 2015 in the river basin. HCA pointed out three clusters, namely Cluster 1 (C1) with low pollution source, Cluster 2 (C2) with moderate pollution source, and Cluster 3 (C3) with high pollution source. In the DA analysis, the results showed 21 variables, 12 variables, and 9 variables for standard mode, forward stepwise mode, and backward stepwise mode, respectively. Meanwhile, the PCA indicated that the main source of pollutants is detected from residential, industrial, commercial, agricultural, animal livestock, as well as forest land. Among the three models developed from MLR analysis, C3 with a high pollution source is detected to be the most suitable model to be used for the prediction of Water Quality Index in the Malacca River basin. This study proposed for an effective river water quality management by having new water quality monitoring network to be designed for more practical use in order to reduce time and effort, as well as cost saving purposes.
Źródło:
Archives of Environmental Protection; 2018, 44, 4; 111-122
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of pedal cyclists and pedestrian fatalities from total monthly accidents and registered private car numbers
Autorzy:
Ghasemlou, K.
Aydi, M. M.
Yildirim, M. S.
Powiązania:
https://bibliotekanauki.pl/articles/223654.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
traffic accidents
cyclist
pedestrians
artificial linear network
regression trees
multiple linear
wypadki drogowe
rowerzysta
piesi
Opis:
Accident prevention is relatively a complex issue considering the effectiveness of the injury prevention technologies as well as more detailed assessment of the complex interactions between the road condition, vehicle and human factor. For many years, highway agencies and vehicle manufacturers showed great efforts to reduce the injuries resulting from the vehicle crashes. Many researchers used a broad range of methods to evaluate the impact of several factors on traffic accidents and injuries. Recent developments lead up to capable for determining the effects of these factors. According to World Health Organization (WHO), cyclists and pedestrians comprise respectively 1.6% and 16.3% in traffic crash fatalities in 2013. Also in Turkey crash fatalities for pedestrian and cyclists are respectively 20.6% and 3% according to Turkish Statistical Instıtute data in 2013. The relationship between cycling and pedestrian rates and injury rates over time is also unknown. This paper aims to predict the crash severity with the traffic injury data of the Konya City in Turkey by implementing the Artificial Neural Networks (ANN), Regression Trees (RT) and Multiple Linear Regression modelling (MLRM) method.
Źródło:
Archives of Transport; 2015, 34, 2; 29-35
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-14 z 14

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies