Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "feature extraction" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Overcoming Overfitting Challenges with HOG Feature Extraction and XGBoost-Based Classification for Concrete Crack Monitoring
Autorzy:
Barkiah, Ida
Sari, Yuslena
Powiązania:
https://bibliotekanauki.pl/articles/27311909.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
HOG
XGBoost
classification
feature extraction
concrete crack monitoring
Opis:
This study proposes a method that combines Histogram of Oriented Gradients (HOG) feature extraction and Extreme Gradient Boosting (XGBoost) classification to resolve the challenges of concrete crack monitoring. The purpose of the study is to address the common issue of overfitting in machine learning models. The research uses a dataset of 40,000 images of concrete cracks and HOG feature extraction to identify relevant patterns. Classification is performed using the ensemble method XGBoost, with a focus on optimizing its hyperparameters. This study evaluates the efficacy of XGBoost in comparison to other ensemble methods, such as Random Forest and AdaBoost. XGBoost outperforms the other algorithms in terms of accuracy, precision, recall, and F1-score, as demonstrated by the results. The proposed method obtains an accuracy of 96.95% with optimized hyperparameters, a recall of 96.10%, a precision of 97.90%, and an F1-score of 97%. By optimizing the number of trees hyperparameter, 1200 trees yield the greatest performance. The results demonstrate the efficacy of HOG-based feature extraction and XGBoost for accurate and dependable classification of concrete fractures, overcoming the overfitting issues that are typically encountered in such tasks.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 3; 571--577
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Classification Method Related to Respiratory Disorder Events Based on Acoustical Analysis of Snoring
Autorzy:
Wang, Can
Peng, Jianxin
Zhang, Xiaowen
Powiązania:
https://bibliotekanauki.pl/articles/176601.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
acoustical analysis
feature extraction
support vector machine
snoring sound
Opis:
Acoustical analysis of snoring provides a new approach for the diagnosis of obstructive sleep apnea hypopnea syndrome (OSAHS). A classification method is presented based on respiratory disorder events to predict the apnea-hypopnea index (AHI) of OSAHS patients. The acoustical features of snoring were extracted from a full night’s recording of 6 OSAHS patients, and regular snoring sounds and snoring sounds related to respiratory disorder events were classified using a support vector machine (SVM) method. The mean recognition rate for simple snoring sounds and snoring sounds related to respiratory disorder events is more than 91.14% by using the grid search, a genetic algorithm and particle swarm optimization methods. The predicted AHI from the present study has a high correlation with the AHI from polysomnography and the correlation coefficient is 0.976. These results demonstrate that the proposed method can classify the snoring sounds of OSAHS patients and can be used to provide guidance for diagnosis of OSAHS.
Źródło:
Archives of Acoustics; 2020, 45, 1; 141-151
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enhancement in Bearing Fault Classification Parameters Using Gaussian Mixture Models and Mel Frequency Cepstral Coefficients Features
Autorzy:
Atmani, Youcef
Rechak, Said
Mesloub, Ammar
Hemmouche, Larbi
Powiązania:
https://bibliotekanauki.pl/articles/177335.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
bearing faults
Gaussian mixture models
Mel frequency cepstral coefficients
feature extraction
diagnosis
Opis:
Last decades, rolling bearing faults assessment and their evolution with time have been receiving much interest due to their crucial role as part of the Conditional Based Maintenance (CBM) of rotating machinery. This paper investigates bearing faults diagnosis based on classification approach using Gaussian Mixture Model (GMM) and the Mel Frequency Cepstral Coefficients (MFCC) features. Throughout, only one criterion is defined for the evaluation of the performance during all the cycle of the classification process. This is the Average Classification Rate (ACR) obtained from the confusion matrix. In every test performed, the generated features vectors are considered along to discriminate between four fault conditions as normal bearings, bearings with inner and outer race faults and ball faults. Many configurations were tested in order to determinate the optimal values of input parameters, as the frame analysis length, the order of model, and others. The experimental application of the proposed method was based on vibration signals taken from the bearing datacenter website of Case Western Reserve University (CWRU). Results show that proposed method can reliably classify different fault conditions and have a highest classification performance under some conditions.
Źródło:
Archives of Acoustics; 2020, 45, 2; 283-295
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Marine Mammals Classification using Acoustic Binary Patterns
Autorzy:
Nadir, Maheen
Adnan, Syed M.
Aziz, Sumair
Khan, Muhammad Umar
Powiązania:
https://bibliotekanauki.pl/articles/1953520.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
marine mammals
1D Local Binary Patterns
Mel frequency cepstral coefficients
feature extraction
passive acoustic monitoring
Opis:
Marine mammal identification and classification for passive acoustic monitoring remain a challenging task. Mainly the interspecific and intraspecific variations in calls within species and among different individuals of single species make it more challenging. Varieties of species along with geographical diversity induce more complications towards an accurate analysis of marine mammal classification using acoustic signatures. Prior methods for classification focused on spectral features which result in increasing bias for contour base classifiers in automatic detection algorithms. In this study, acoustic marine mammal classification is performed through the fusion of 1D Local Binary Pattern (1D-LBP) and Mel Frequency Cepstral Coefficient (MFCC) based features. Multi-class Support Vector Machines (SVM) classifier is employed to identify different classes of mammal sounds. Classification of six species named Tursiops truncatus, Delphinus delphis, Peponocephala electra, Grampus griseus, Stenella longirostris, and Stenella attenuate are targeted in this research. The proposed model achieved 90.4% accuracy on 70-30% training testing and 89.6% on 5-fold cross-validation experiments.
Źródło:
Archives of Acoustics; 2020, 45, 4; 721-731
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble of feature extraction methods to improve the structural damage classification in a wind turbine foundation
Autorzy:
Leon-Medina, Jersson X.
Parés, Núria
Anaya, Maribel
Tibaduiza, Diego A.
Pozo, Francesc
Powiązania:
https://bibliotekanauki.pl/articles/27311417.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
structural health monitoring
wind turbine foundation
damage classification
machine learning
feature extraction
XGBoost
monitorowanie stanu konstrukcji
fundament turbiny wiatrowej
klasyfikacja uszkodzeń
uczenie maszynowe
ekstrakcja cech
Opis:
The condition monitoring of offshore wind power plants is an important topic that remains open. This monitoring aims to lower the maintenance cost of these plants. One of the main components of the wind power plant is the wind turbine foundation. This study describes a data-driven structural damage classification methodology applied in a wind turbine foundation. A vibration response was captured in the structure using an accelerometer network. After arranging the obtained data, a feature vector of 58 008 features was obtained. An ensemble approach of feature extraction methods was applied to obtain a new set of features. Principal Component Analysis (PCA) and Laplacian eigenmaps were used as dimensionality reduction methods, each one separately. The union of these new features is used to create a reduced feature matrix. The reduced feature matrix is used as input to train an Extreme Gradient Boosting (XGBoost) machine learning-based classification model. Four different damage scenarios were applied in the structure. Therefore, considering the healthy structure, there were 5 classes in total that were correctly classified. Five-fold cross validation is used to obtain a final classification accuracy. As a result, 100% of classification accuracy was obtained after applying the developed damage classification methodology in a wind-turbine offshore jacket-type foundation benchmark structure.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 3; art. no. e144606
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on communication emitter identification based on semi-supervised dimensionality reduction in complex electromagnetic environment
Autorzy:
Ge, Wei
Qi, Lin
Tong, Lin
Zhu, Jun
Zhang, Jing
Zhao, Dongyang
Li, Ke
Powiązania:
https://bibliotekanauki.pl/articles/27311449.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
communication emitter identification
feature extraction
dimensionality reduction
VMD
ESDA
variational mode decomposition
exponential semi-supervised discriminant analysis
identyfikacja emitera komunikacyjnego
ekstrakcja cech
redukcja wymiarowości
rozkład w trybie wariacyjnym
analiza dyskryminacyjna wykładnicza półnadzorowana
Opis:
The individual identification of communication emitters is a process of identifying different emitters based on the radio frequency fingerprint features extracted from the received signals. Due to the inherent non-linearity of the emitter power amplifier, the fingerprints provide distinguishing features for emitter identification. In this study, approximate entropy is introduced into variational mode decomposition, whose features performed in each mode which is decomposed from the reconstructed signal are extracted while the local minimum removal method is used to filter out the noise mode to improve SNR. We proposed a semi-supervised dimensionality reduction method named exponential semi-supervised discriminant analysis in order to reduce the high-dimensional feature vectors of the signals, and LightGBM is applied to build a classifier for communication emitter identification. The experimental results show that the method performs better than the state-of-the-art individual communication emitter identification technology for the steady signal data set of radio stations with the same plant, batch and model.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 4; art. no. e145766
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies