Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "(ga)." wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Optimization of soft-sensing model for ash content prediction of flotation tailings by image features tailings based on GA-SVMR
Autorzy:
Wang, Guanghui
He, Ting
Kuang, Yali
Lin, Zhe
Powiązania:
https://bibliotekanauki.pl/articles/1449310.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
GA-SVMR
image features
flotation
ash content
Opis:
Ash content is one of the most important properties of coal quality and the ash prediction of coal slurry in floatation is urgent and important for automation of the floatation process. The aim of this paper is to propose a method of ash content prediction for flotation tailings by the use of image analysis. The mean gray value, energy, skewness and coal slurry concentration are highly correlated with coal slurry ash content by correlation analysis based on experiments while the particles’ size has little effect on the ash. Single variable linear prediction model between coal ash content and mean gray value was developed by the LS and its prediction errors were below 7%. For improving the prediction results, an ash prediction model based on GA-SVMR was established with additional three input parameters: energy, skewness, coal slurry concentration. This model has a higher accuracy with predictive errors all below 5% and 80% of them less than 3%. Results indicate that GA-SVMR model has a higher precision compared with LS model and PSO-SVMR model and soft-sensing model based on image features of the slurry can be used as a new method for ash detection of floatation tailings in automatic control process of coal flotation.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 4; 590-598
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optical activity of Ca3Ga2Ge4O14 crystals: experiment and calculus
Autorzy:
Shopa, Y
Ftomyn, N
Powiązania:
https://bibliotekanauki.pl/articles/174941.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
langasite
optical activity
polarimetry
polarizabilities
Opis:
Using a highly accurate polarimetric method, we determine the gyration tensor component g11 for Ca3Ga2Ge4O14 (CGG) crystals. For this aim we employ a single-wavelength high-accuracy polarimeter and eliminate the main systematic errors of our polarimetric measurements. A calculation technique based on the polarizability theory for optical activity (OA) is applied to derive optical rotatory power (ORP) for the CGG. A comparison of the observed and calculated OA parameters confirms the validity of our theoretical calculations. Dispersions of both the ordinary and extraordinary refractive indices and the ORP are calculated.
Źródło:
Optica Applicata; 2013, 43, 2; s. 217-228
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction and optimization of tower mill grinding power consumption based on GA-BP neural network
Autorzy:
Wang, Ziyang
Hou, Ying
Sobhy, Ahmed
Powiązania:
https://bibliotekanauki.pl/articles/27323660.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
tower mill
grinding power consumption
energy saving
genetic algorithm
BP neural network
Opis:
Grinding is commonly responsible for the liberation of valuable minerals from host rocks but can entail high costs in terms of energy and medium consumption, but a tower mill is a unique power-saving grinding machine over traditional mills. In a tower mill, many operating parameters affect the grinding performance, such as the amount of slurry with a known solid concentration, screw mixer speed, medium filling rate, material-ball ratio, and medium properties. Thus, 25 groups of grinding tests were conducted to establish the relationship between the grinding power consumption and operating parameters. The prediction model was established based on the backpropagation “BP” neural network, further optimized by the genetic algorithm GA to ensure the accuracy of the model, and verified. The test results show that the relative error of the predicted and actual values of the backpropagation “BP” neural network prediction model within 3% was reduced to within 2% by conducting the generic algorithm backpropagation “GA-BP” neural network. The optimum grinding power consumption of 41.069 kWh/t was obtained at the predicted operating parameters of 66.49% grinding concentration, 301.86 r/min screw speed, 20.47% medium filling rate, 96.61% medium ratio, and 0.1394 material-ball ratio. The verifying laboratory test at the optimum conditions, produced a grinding power consumption of 41.85 kWh/t with a relative error of 1.87%, showing the feasibility of using the genetic algorithm and BP neural network to optimize the grinding power consumption of the tower mill.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 6; art. no. 172096
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An inventory model to study the effect of the probabilistic rate of carbon emission on the profit earned by a supplier
Autorzy:
Bhattacharjee, Nabajyoti
Sen, Nabendu
Powiązania:
https://bibliotekanauki.pl/articles/2100360.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
inventory modelling
carbon emission
green investment
preservation
PSO
GA
Opis:
Sensitivity analysis of parameters is usually more important than the optimal solution when it comes to linear programming. Nevertheless, in the analysis of traditional sensitivities for a coefficient, a range of changes is found to maintain the optimal solution. These changes can be functional constraints in the coefficients, such as good values or technical coefficients, of the objective function. When real-world problems are highly inaccurate due to limited data and limited information, the method of grey systems is used to perform the needed optimisation. Several algorithms for solving grey linear programming have been developed to entertain involved inaccuracies in the model parameters; these methods are complex and require much computational time. In this paper, the sensitivity of a series of grey linear programming problems is analysed by using the definitions and operators of grey numbers. Also, uncertainties in parameters are preserved in the solutions obtained from the sensitivity analysis. To evaluate the efficiency and importance of the developed method, an applied numerical example is solved.
Źródło:
Operations Research and Decisions; 2021, 31, 4; 5--33
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Beneficiation of Ga from alunite concentrates by selective acid leaching and alkaline precipitation
Autorzy:
Zhu, Mao-Lan
Chen, Hang
Zhong, Shui-Ping
Huang, Zhong-Sheng
Chen, Xi
Hu, Zhi-Biao
Powiązania:
https://bibliotekanauki.pl/articles/110733.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
gallium
selective leaching
precipitation
alunite concentrate
Opis:
In this study beneficiation of Ga from alunite ore was investigated. The effects of the calcination temperature, H2SO4 concentration, leaching temperature and liquid-solid ratio on the dissolution characteristic of Ga, K and Al were studied. The results showed that increasing the calcination temperature, H2SO4 concentration and leaching temperature can improve the solubility of K and Al. However, higher H2SO4 concentration and lower leaching temperature can improve the dissolution of Ga, which was beneficial to recovery of Ga. On the basis of the solubility difference in H2SO4, a two-stage process of selective acid leaching and alkali precipitation of Ga was proposed. The concentration of Ga was increased significantly from 54 g/t in alunite ore to 4100 g/t in alkali precipitation product. The major elements of Al and K in alunite were recovered as the alum crystal with a purity of 99.62%.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 4; 1028-1038
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving estimation accuracy of metallurgical performance of industrial flotation process by using hybrid genetic algorithm – artificial neural network (GA-ANN)
Autorzy:
Allahkarami, E.
Salmani Nuri, O.
Abdollahzadeh, A.
Rezai, B.
Maghsoudi, B.
Powiązania:
https://bibliotekanauki.pl/articles/109424.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
artificial neural network
genetic algorithm
prediction
copper flotation
Opis:
In this study, a back propagation feed forward neural network, with two hidden layers (10:10:10:4), was applied to predict Cu grade and recovery in industrial flotation plant based on pH, chemical reagents dosage, size percentage of feed passing 75 μm, moisture content in feed, solid ratio, and grade of copper, molybdenum, and iron in feed. Modeling is performed basing on 92 data sets under different operating conditions. A back propagation training was carried out with initial weights randomly mode that may lead to trapping artificial neural network (ANN) into the local minima and converging slowly. So, the genetic algorithm (GA) is combined with ANN for improving the performance of the ANN by optimizing the initial weights of ANN. The results reveal that the GA-ANN model outperforms ANN model for predicting of the metallurgical performance. The hybrid GA-ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the metallurgical performance prediction.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 1; 366-378
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies