Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "combustion process" wg kryterium: Temat


Tytuł:
Combustion process visualisation in rapid compression machine modelling combustion in spark ignition engines
Autorzy:
Leżański, T.
Sęczyk, J.
Wolański, P.
Powiązania:
https://bibliotekanauki.pl/articles/245855.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
internal combustion engines
spark ignition engines
combustion process
combustion process control
visualization of combustion process
Opis:
Mixture preparation and combustion processes in internal combustion engines are very complex and very difficult to investigate. These processes run very quickly and their parameters are changed quickly and in wide ranges. Therefore, the interpretation of measurement results is very difficult and uncertain. The visualization methods applied in the combustion researches can help to interpret the results. For many years, the visualization methods have been developed at the Aircraft Engine Department of Heat Engineering Institute of Warsaw University of Technology, in the field of combustion in engines, detonation and gas dynamics research. In these researches, different method of registration of very fast changes of combustion were applied. The combustion experiments have been performed in constant volume bomb, rapid compression machines and experimental visualisation engines. In the last case, the electronic digital camera of Photram SA 1.3 has been used. This paper refers to the experiments, which were conducted using rapid compression machine. Their goal was explanation the combustion mechanism in combustion system with semi-open combustion chamber under different parameters of this system. The obtained results show a strong influence of combustion system parameters on combustion mechanism, especially on a compression ratio and ignition timing. The strong swirls were registered at all sharp edges on combustion chamber during compression stroke. These swirls had a strong influence on the combustion system operation.
Źródło:
Journal of KONES; 2013, 20, 4; 219-226
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research of flame propagation in combustion system with semi-open combustion chamber for gasoline SI engines
Autorzy:
Leżański, T.
Sęczyk, J.
Wolański, P.
Powiązania:
https://bibliotekanauki.pl/articles/242275.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
SI engines
engine combustion systems
combustion process visualization
Opis:
Some results of visualization researches of combustion system with divided, semi - open combustion chamber for SI engines, using rapid compression machine (RPM) and experimental visualization engine (EVE) are presented in his paper. Short description of combustion system operation, description of test stands and research equipment can be found in the paper. The tests were performed at stoichiometric ratio natural gas-air and propane-air mixtures. A few the most characteristic of results are shown; to explain how should be operate the combustion system, to yield the better performance. They are compared the research results (photographs of combustion sequence, diagrams of in-cylinder pressure histories) during visualization testing with using RCM and EVE. During RCM testing we obtained the combustion photographs in the plain pass in cylinder axis but during ECE testing at the plain perpendicular to the cylinder axis. All researches shown that the best performance are yielded when a spark advance angle (ignition timing) is such selected that stream outflow prechamber to main combustion chamber starts when the piston is at TDC and it has adequate energy to travel a main combustion chamber with higher velocity than burning velocity in quiescent chamber. Then the shortest time of combustion, the highest peak pressure in the cycle and bigger useful working are yielded. The impact of spark advance angle on flame propagation process into combustion chamber in extreme cases has been analyzed too.
Źródło:
Journal of KONES; 2011, 18, 2; 251-260
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of chosen parameters of water fuel microemulsion on combustion processes, emission level of nitrogen oxides and fuel consumption of CI engine
Autorzy:
Jankowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/247478.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
diesel engines
combustion process
ecology
emulsion
microemulsions
Opis:
The microemulsion is the emulsion with dimension of molecules approx. micrometre and smaller. Such microemulsion of water and diesel oil creates new quality and lets on obtainment ecological and economic of effects, as well as eliminates the disadvantageous influence common emulsions, or unprofitable effects of the injection of water to inlet system of the engine, direct to combustion chambers, as well as the sequential injection of water direct to combustion chambers. The essence of apply of the microemulsion is also improve catalytic influence of small molecules of water on combustion process, what, beside decreasing temperature combustion gases, influences both emission level components of toxic combustion gases, as and the level of the specific fuel consumption. The paper presents different ways of microemulsion production, novel way of microemulsion production, which does not demand apply of mixers and suffers obtainment of microemulsion with the volumetric content of water in diesel oil do 40% under conditions of laboratory and stabile the microemulsion with content of water in diesel oil to 25%. Results of laboratory research involving basic parameters of the microemulsion and engine researches with measurements emission ingredients of toxic exhaust gases and fuel consumptions are presented involving basic parameters of the microemulsion and engine researches with measurements emission ingredients (NOx, soot, fuel consumption) of toxic exhaust gases and fuel consumptions are presented in the paper.
Źródło:
Journal of KONES; 2011, 18, 4; 593-600
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of diesel/ethanol blends on variations of selected combustion parameter
Autorzy:
Lotko, W.
Smigins, R.
Górski, K.
Powiązania:
https://bibliotekanauki.pl/articles/242253.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
misfire detection
diesel engine
combustion process
ethanol
Opis:
This paper presents and discusses selected research results of the diesel engine fuelled with blends of: diesel oil (DO), synthetic ethanol (ET) as oxygenated additive and small quantity of fatty acid methyl esters (FAME) used as emulsifier. Content of ethanol in diesel oil was changed in wide range (up to 50%). Addition of 5% by vol. Of FAME was constant for each tested mixture. Preliminary tests were focused on influence of fuels blends composition on its combustion process. The main analyzed parameter was mean indicated pressure and its unrepeatability index. Research suggests that diesel oil blended with up to 20% of ethanol can be successfully used for diesel engines feeding. Higher ethanol content in mixture with diesel oil is unfavourable because misfire phenomenon occurs immediately. In this case tested engine works unstable with extremely high toxic gases emission. Some physical properties of tested fuels, measurement system configuration, Values of mean indicated pressure vs. cycle number for AD3.152 engine fuelled with: pure diesel oil, ETIO, ET20, ET30, ET 40, ET50, Variations of unrepeatability index of mean indicated pressure in relationship to kind of tested fuels are presented In the paper. Research shows that tested engine is not possible to operate with using above 40% of ethanol content in diesel oil, as the fuel simply will not ignite.
Źródło:
Journal of KONES; 2009, 16, 2; 279-284
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation of injection and combustion processes in 4-stroke spark ignition engine with CNG direct injection
Autorzy:
Sendyka, B.
Mitianiec, W.
Noga, M.
Wachulec, W.
Powiązania:
https://bibliotekanauki.pl/articles/246095.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
injection process
combustion process
simulation
modelling
alternative fuels
CNG
Opis:
The paper presents results of simulation conducted as afirst step of 4-stroke spark ignition experimental engine testing. The simulations were performed in a KIVA-3Vsoftware, which is intended to carry out a 3-D simulations of engine's processes. The source code of the software has been modified in order to apply it for gas injection. Original version of the software has been designedto simulate liquid fuel injection only. The simulation of direct CNG injection and combustion has been done for stratified and homogenous modes in order to check the assumed injection, ignition and charging parameters. Important assumption is that the injector had only one nozzle with flow area equal to 2 mm2. Two different cases of fuel direct injection for stratified charge have been analysed. In the first case fuel jet was almost vertical. In the other one fuel jet was nearly horizontal. Further testing has been performed using one-cylinder motorcycle 4-stroke SUZUKI DR-Z400S engine adapted to CNG fuelling. Such an engine has a suitable high compression ratio for CNG fuelling. The simulation has confirmed assumed parameters and has shown that one nozzle injector doesn't provide required fuel stream dissipation and piston crown modification is needed to direct fuel stream in spark plug area. However doing simulation requires some effort this example has shown than this is very important step before conducting experimental tests which provides crucial information and helps to avoid expensive mistakes which can be made during experimental engine preparation.
Źródło:
Journal of KONES; 2010, 17, 1; 373-378
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational modelling of the fuel injection and combustion in a Diesel K6 rotary engine
Autorzy:
Mason, M.
Wyszyński, M. L.
Jordan, O.
Gibson, D.
Powiązania:
https://bibliotekanauki.pl/articles/243793.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
combustion process
combustion factors
fuel injection
ANSYS Fluent code
Opis:
This paper outlines the methods and results of computations completed using the ANSYS Fluent code modelling the fuel injection and combustion within the K6 engine, a new form of rotary engine in which the fuel is injected in an arc across the top of the cylinder. The model uses the DPM Model in conjunction with a dynamic mesh and non-premixed combustion models to treat the injection as liquid diesel evaporating to C12H23. The outcomes of this model are presented in images displaying the distribution of temperature, and fuel and CO2 concentrations. The limitations pertaining to the maximum injection angles are also studied. The simulation is found to be effective and the results suggestive of successful, clean and complete combustion while presenting some matters, which require further investigation. The article presents temperature within the combustion chamber at various crank angle degrees, ) velocity of fluid within the combustion chamber, effects of impingement with injector offset on temperature and fuel concentration, fuel concentration demonstrating impingement, in cylinder temperature curve.
Źródło:
Journal of KONES; 2018, 25, 4; 263-276
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of butanol blend on in-cylinder combustion process. Part 1: Spark ignition engine
Autorzy:
Tornatore, C.
Marchitto, L.
Mazzei, A.
Valentino, G.
Powiązania:
https://bibliotekanauki.pl/articles/242033.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
optical diagnostics
combustion process
PFI SI boosted engin
Opis:
The addition of alcohol to conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 40% n-butanol blended in volume with gasoline was investigated by cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Changes in spark timing and fuel injection phasing were considered in order to investigate normal and abnormal combustion. Comparisons between the parameters related to the flame luminosity and to the pressure signals were performed. The duration of injection for butanol blend was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. Butanol blend granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects and the formation of ultrafine carbonaceous particles.
Źródło:
Journal of KONES; 2011, 18, 2; 427-438
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of compression ratio on combustion, turbulence, swirls into model combustion chamber of SI engines
Autorzy:
Leżański, T.
Sęczyk, J.
Wolański, P.
Powiązania:
https://bibliotekanauki.pl/articles/246616.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
internal combustion engines
spark ignition
combustion processes
new combustion systems
combustion process visualisation
Opis:
The results of the visualization researches, with the pressure measurement results are presented in the paper. Researches deal with the combustion system with semi-open combustion chamber for spark ignition engines. This system was elaborated in Aircraft Engine Department of Heat Engineering Institute of Warsaw University of Technology. During researches the influence of CR on a flame front propagation and turbulences into combustion chamber, when CR and ignition advance are varied, was determined. The model combustion chamber was made with the constant volumes ratio (the prechamber volume to the prechamber plus main combustion chamber volumes) of 28%. The CR were varied: 6:1, 8:1, 10:1 and 12:1, by changing of combustion chamber length and establish high. The researches were performed using rapid compression machine (RCM). The combustion sequences were recorded using high-speed digital camera with speed of 5000 frames per second. Simultaneously with combustion sequences recording, the high-speed pressure courses were registered. The research results show that the growth of compression ratio causes an improvement of combustion system performances; an increase of maximum cycle pressure and useful work field. The improvement of the performances is caused mainly by shortening of the combustion time and intensification of the turbulences and approaching of supposed combustion course.
Źródło:
Journal of KONES; 2015, 22, 4; 179-186
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preliminary investigations of the HCCI combustion system in a single cylinder research engine
Autorzy:
Motyl, K.
Lisowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/246468.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
thermodynamics
internal combustion engines
HCCI
combustion process
exhaust emission
bio-fuel
Opis:
This paper describes the results of the preliminary experimental research of the HCCI combustion system in a single cylinder research engine fuelled by means of natural gas containing 95% methane. In this research, influence of the initial temperature of the charge and mixture composition on the maximum combustion pressure, maximum speed of pressure growth, selfignition delay time, combustion time, maximum combustion temperature, heat release and combustion efficiency have been studied. The paper contains: description of the engine modification to adopt it for HCCI operation requirements, applied measurements equipment, selected results of the experimental research. The results shows that initial charge temperature and mixture composition (relative air/fuel ratio coefficient) have essential influence on the engine operating results. The experimental research has been conducted for the varied initial charge temperature from 140 centigrade up to 210 centigrade and for varied relative air/fuel ratio coefficient 1=1; 1=1.5; 1=1.7; 1=2. Maximum charge pressure, maximum speed of pressure growth selfignition delay time was rather unaffected on the initial charge temperature increase beyond 200 centigrade. Previous and current author's research works have indicated that extremely low emissions and high combustion efficiencies are possible to reach if homogeneous charge compression ignition is applied.
Źródło:
Journal of KONES; 2007, 14, 3; 429-436
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research effects of novel combustion system with semi-open combustion chamber using rapid compression machine
Autorzy:
Leżański, T.
Sęczyk, J.
Wolański, P.
Powiązania:
https://bibliotekanauki.pl/articles/245605.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
internal combustion engines
spark ignition
combustion processes
engine combustion systems
combustion process visualization
Opis:
The combustion system with semi open combustion chamber (SOCC) was originally elaborated in Aircraft Engine Department of Warsaw University of Technology. In this system the original combustion chamber of the standard SI engine, was divided by partition in prechamber and main combustion chamber, but yet this division exists only when the piston is close to TDC, on the contrary by the rest of the cycle the chambers are fully open. The system operation mechanism, the visualization research results, the high speed changed of the pressure measurements, was presented in this paper. The influence on the system performances of the different combustion systems parameters: the prechamber volume, the nozzle hole diameter in the partition, the ignition place, the compression ratio, and the ignition advance angle (IAA), on the basis of the research results, using rapid compression machine was presented in this paper. All research results show, that the best results of the system operation can be obtained if the stream outflow from prechamber to main combustion chamber starts when the piston is at TDC, and if the stream energy will be so big to displace all main combustion chamber before the clearance between partition and piston crown was opened. If the system operated correctly, the combustion time shortening, the growth of the maximum cycle pressure, and the combustion efficiency increase were obtained.
Źródło:
Journal of KONES; 2014, 21, 4; 297-310
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flame front propagation in combustion system with semi - open combustion chamber with different compression ratio
Autorzy:
Leżański, T.
Sęczyk, J.
Wolański, P.
Powiązania:
https://bibliotekanauki.pl/articles/242590.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
internal combustion engines
spark ignition
combustion processes
new combustion systems
combustion process visualisation
Opis:
Researches of the combustion system with semi-open combustion chamber for spark ignition engines. This system was elaborated in Aircraft Engine Department of Heat Engineering Institute of Warsaw University of Technology. The researches concern the determination of influence CR on a flame front propagation into combustion chamber when CR and ignition advance are varied. The model combustion chamber make up with the constant volumes ratio of the prechamber volume to the prechamber plus main combustion chamber volumes, of 28%, but the CR were varied: 6:1, 8:1, 10:1 and 12:1, by changing of combustion chamber length. The researches were performed using rapid compression machine (RCM). The combustion sequences were recorded using high-speed digital camera with speed of 5000 frames per second. Simultaneously with combustion sequences recording, the high-speed pressure measurements were performed. The results of the visualization researches, with the pressure measurement results are presented in the paper. The research results show that the growth of compression ratio caused an improvement of combustion system performances; an increase of maximum cycle pressure and useful work field. The improvement of the performances is caused mainly by shortening of the combustion chamber length and approaching of supposed combustion course.
Źródło:
Journal of KONES; 2013, 20, 4; 227-235
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical modelling of combustion process with the use of ANSYS FLUENT code
Autorzy:
Kowalski, M.
Jankowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/245622.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
liquid fuels
combustion processes
turbulent flow
combustion process model
ANSYS FLUENT
Opis:
The article presents the modelling of the combustion process of liquid fuels using professional ANSYS FLUENT software. This program allows modelling the dynamics of compressible and incompressible, laminar and turbulent flows as well as heat exchange phenomena with occurrence and without chemical reactions. The model presented in the article takes into account the influence of the gas phase on the liquid phase during the fuel combustion process. The influence of velocity and pressure of the flowing gas and the type of flow has a significant impact on the combustion of liquid fuels. The developed model is fully reliable and the presented results are consistent with experimental research. The occurrence of a laminar sublayer in a turbulent flow was confirmed, and the thickness of this layer and the turbulent layer significantly influences the course of the combustion process. The use of the flat flow model reflects the basic phenomena occurring during the combustion of liquid fuels under turbulent conditions. The use of the program for flows with different flow velocity profiles is justified. It gives important information about the processes taking place during the combustion of liquid fuels. The results of numerical tests are presented graphically. The article presents graphs of velocity field, absolute pressure, power lines, temperature and density.
Źródło:
Journal of KONES; 2018, 25, 4; 175-186
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of thermal efficiency of the spark ignition systems
Autorzy:
Sendyka, B.
Mitianiec, W.
Noga, M.
Wachulec, W.
Powiązania:
https://bibliotekanauki.pl/articles/246099.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion process
ignition system
thermal efficiency
spark plug
CNG
Opis:
The paper presents results of measurements performed to determine thermal efficiency of spark ignition systems. Because of small pressure change after sparking process smali volume chamber has been proposed for measurements. A direct measurement method of pressure increment determination has been chosen. In this method one pressure chamber is used. The caloric chamber isfilledwith nitrogen, which is a neutral gas. It is preferable medium than air because it is one-component gas and it has a precisely-known value of a specific gas constant. The value of speciflc gas constant is reąuested to calculate a value of discharge energy given to the gas. In the chosen method pressure increment in the chamber during spark discharge is measured. The pressure increment in the chamber during ignition is strictly related to the energy of spark discharge. The energy balance calculations determined values of heat los s es for two types of electrodes (normal and "thin") anddifferent initial pressure (p=0 bar and p=25 bar). The maximal value of the thermal efficiency was observedfor the higher value of pressure in chamber and thin electrodes of spark ping. It was also stated, that the higher thermal efficiency for" thin " spark ping electrodes is a result of reduced heat transfer. The paper presents results of the tests carried out in the caloric chamber of 4. l cm3 filled with nitrogen at ambient temperature using PCB transducer direct measurement method. Results of the measurements done using differential pressure transducer for the same parameters like in thefirst measurement method were similar.
Źródło:
Journal of KONES; 2010, 17, 1; 365-371
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some problems of combustion system operation with semi-open combustion chamber for spark ignition engine
Autorzy:
Leżański, T.
Sęczyk, J.
Wolański, P.
Powiązania:
https://bibliotekanauki.pl/articles/247782.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
SI engine
rapid compression machine
combustion
combustion process visualization
ignition advance angle
Opis:
The some problems concern of the new combustion system operation with semi open combustion chamber, which can be used in spark ignitions internal combustion engines are presented in this paper. These considerations are based on the visualization research results, with using rapid compression machine (RCM). In this researched combustion system the original combustion chamber was divided by partition in prechamber and main combustion chamber. This division of the original combustion chamber exists only when the piston is close to TDC, for the rest of the cycle the chambers arefully open. Ignition is initiated in the prechamber using electric spark plug, but the mixture in main combustion chamber is ignited by the stream of the burned gases injected from prechamber through the orifice in partition, if the ignition advance angle is correct. If the ignition advance angle is incorrect the mixture from prechamber will be outflowing through the orifice in partition and through the slot which is created between the partition and piston crowns. This last stream is swirled on the partition edge, what causes decrease of the stream speed outflowed from the orifice in partition to main combustion chamber. If the ignition advance angle is too big, then a peak pressure and compression work is very big because the burned gases are compressed instead of the fresh air/fuel mixture. This causes that the effective work is small and combustion efficiency is small.
Źródło:
Journal of KONES; 2010, 17, 4; 287-294
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The ANN approximation of the CH4 combustion model : the mixture composition
Autorzy:
Kowalski, J.
Powiązania:
https://bibliotekanauki.pl/articles/246942.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
modeling
internal combustion engines
approximation
artificial neural network
combustion process
chemical species
Opis:
The calculation of the changing of the combustion mixture composition during the combustion process of the CH4 is presented of the paper. Correct calculation results of the mixture composition during the combustion process in combustion chambers of internal combustion engines is important to define the heat release calculation, modeling and simulation of the combustion phenomena. The paper presents results of calculations for the GriMech 3 kinetic mechanism of the methane combustion for different thermodynamic parameters and the composition of the combusted mixture. Results of the kinetic calculation of combustion process are qualitatively consistent with the data available in literature. The second purpose of research was the approximation of obtained results with the trained artificial neural network. Input data needed to approximate mole fractions of considered in the GriMech 3 mechanism combustion process chemical species consisted of 52 mole fractions of initial chemical species and temperature and pressure process. For all considered chemical species the mean square error did not exceed a value of 1-10-2 %, but the maximum error for a single value of 43 species excess even more than 100% of the value of mole fraction values taken from kinetic calculations. Single values of errors disqualify the neural network application for modeling of mole fractions of chemical species.
Źródło:
Journal of KONES; 2010, 17, 2; 233-240
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies