Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ansys Fluent" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Numerical modelling of combustion process with the use of ANSYS FLUENT code
Autorzy:
Kowalski, M.
Jankowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/245622.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
liquid fuels
combustion processes
turbulent flow
combustion process model
ANSYS FLUENT
Opis:
The article presents the modelling of the combustion process of liquid fuels using professional ANSYS FLUENT software. This program allows modelling the dynamics of compressible and incompressible, laminar and turbulent flows as well as heat exchange phenomena with occurrence and without chemical reactions. The model presented in the article takes into account the influence of the gas phase on the liquid phase during the fuel combustion process. The influence of velocity and pressure of the flowing gas and the type of flow has a significant impact on the combustion of liquid fuels. The developed model is fully reliable and the presented results are consistent with experimental research. The occurrence of a laminar sublayer in a turbulent flow was confirmed, and the thickness of this layer and the turbulent layer significantly influences the course of the combustion process. The use of the flat flow model reflects the basic phenomena occurring during the combustion of liquid fuels under turbulent conditions. The use of the program for flows with different flow velocity profiles is justified. It gives important information about the processes taking place during the combustion of liquid fuels. The results of numerical tests are presented graphically. The article presents graphs of velocity field, absolute pressure, power lines, temperature and density.
Źródło:
Journal of KONES; 2018, 25, 4; 175-186
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational modelling of the fuel injection and combustion in a Diesel K6 rotary engine
Autorzy:
Mason, M.
Wyszyński, M. L.
Jordan, O.
Gibson, D.
Powiązania:
https://bibliotekanauki.pl/articles/243793.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
combustion process
combustion factors
fuel injection
ANSYS Fluent code
Opis:
This paper outlines the methods and results of computations completed using the ANSYS Fluent code modelling the fuel injection and combustion within the K6 engine, a new form of rotary engine in which the fuel is injected in an arc across the top of the cylinder. The model uses the DPM Model in conjunction with a dynamic mesh and non-premixed combustion models to treat the injection as liquid diesel evaporating to C12H23. The outcomes of this model are presented in images displaying the distribution of temperature, and fuel and CO2 concentrations. The limitations pertaining to the maximum injection angles are also studied. The simulation is found to be effective and the results suggestive of successful, clean and complete combustion while presenting some matters, which require further investigation. The article presents temperature within the combustion chamber at various crank angle degrees, ) velocity of fluid within the combustion chamber, effects of impingement with injector offset on temperature and fuel concentration, fuel concentration demonstrating impingement, in cylinder temperature curve.
Źródło:
Journal of KONES; 2018, 25, 4; 263-276
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational investigations of active flow control on helicopter - rotor blades
Autorzy:
Stalewski, W.
Sznajder, K.
Powiązania:
https://bibliotekanauki.pl/articles/242558.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
rotorcraft
rotor aerodynamics
active flow control
Active Gurney Flap
URANS
ANSYS Fluent
Opis:
The paper presents results of the first stage of the research conducted within the frames of Active Rotor Technologies, which is the dynamically developed sub-domain of Rotorcraft Engineering. The research concerned a computational modelling and investigations of new solutions aiming at improvement of performance of modern helicopters and their environmental impact, by active control of operation of their rotors. The paper focuses on one of such solutions applied for the active control of airflow around helicopter-rotor blades. This solution is the Active Gurney Flap – a small, flat tab located at a pressure side of rotor blade near its trailing edge, which is cyclically deployed and stowed during rotation cycles of the blade. The Active Gurney Flap seems to be very promising solution which will enable helicopters to operate with reduced power consumption or reduced main rotor tip speed whilst preserving current flight performance capabilities, especially in terms of retreating blade stall. The newly developed methodology of computational modelling of active-flow-control devices, like Active Gurney Flap, applied for enhance a helicopter performance and improve its environmental impact, has been presented. Development of the methodology was the challenging task, taking into account strongly unsteady character of modelled phenomena and large differences of scales in both the space and time domain, where very small, dynamically deflected tab strongly influences the flow around rotating, large main rotor. Exemplary CFD simulations, presented in the paper, have been conducted to validate developed methodology.
Źródło:
Journal of KONES; 2014, 21, 2; 281-288
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental and numerical modelling of combustion process of liquid fuels under laminar conditions
Autorzy:
Żurek, J.
Jankowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/950154.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engines
modelling of combustion processes
laser Doppler velocimetry
Phase Doppler
Laser Analyser
ANSYS Fluent
laminar bounduary layer
Opis:
The paper presents the results of experimental studies obtained in a special test stand, which was carried out with the addition of mass flow, summarizes the theoretical analysis of the phenomena occurring in the flow, and the calculations, which were performed using the modeling of flow in the channel. The two examples of model calculations for the two laminar Reynolds number values are shown. Paper presents: channel scheme for analyzing the flow arising as a result of adding mass, two-dimensional diagram of the computational domain with the mass addition, grid computing domain, two-component velocity field, the lines of current in the channel, the distribution of the vector field in the channel, the average velocity as a function of the distances, the speed and temperature distributions for each channel cross-sections for flow with various values of the Reynolds number. The increase in lateral velocity Vb , while maintaining constant lower speed Vd , decreases the thickness of the boundary layer, both the velocity and the thermal one, which was also referenced in experimental investigations, carried out on the special test rig, using LDV and PDPA laser techniques.
Źródło:
Journal of KONES; 2014, 21, 3; 309-316
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Test stand for modelling of combustion processes of liquid fuels
Autorzy:
Jankowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/243433.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion processes test stand for combustion modelling
laser method
laser Doppler velocimetry
Phase Doppler Particle Analyser
ANSYS Fluent
Opis:
Boundary layer is a reflection of the phenomena occurring in the combustion of liquid fuels with perpendicular to the surface of adding mass. For study the influence the thermal boundary layer on the process of combustion a special test stand has been developed, in which the flow of the medium with the addition of mass can be realized. Quartz windows and magnesium oxide powder, which is added for allow visualization of the airflow stream. Quartz windows are placed in the sidewalls of the chamber. The paper presents the test stand. The test stand consists of the following main components: test chamber, the main air preparation module, auxiliary air preparation module, module of particulate cartridge, air compressor, compensation tank, control unit and accessories in the form of filters, valves, pressure gauges and automatic control. Velocity of flow through the test chamber is controlled with air pressure from air preparation units and with the location of the regulatory fin at the end of the measuring chamber. The cartridge unit produces a homogeneous mixture of MgO particulates in air. Test results of the axial velocity profile at a distance of L=0.35 m obtained with LDA and PDPA laser equipment and ANSYS FLUENT numerical computations. Important for the combustion process is laminar boundary layer in laminar flow and laminar sublayer in turbulent flow.
Źródło:
Journal of KONES; 2014, 21, 2; 121-126
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies