Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wyszynski, M." wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Study of the influences of blending different proportions of propane into methane on combustion characteristics at the knock threshold by using RCM
Autorzy:
Shokrollahi, F.
Wyszynski, M.
Sundell, J.-P.
Powiązania:
https://bibliotekanauki.pl/articles/244926.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
Rapid Compression Machine
knock threshold operating condition
peak driving pressure
knock intensity
Opis:
A spark-ignited Rapid Compression Machine (RCM) has been used to investigate the influences of the different proportions of methane-propane mixtures on the combustion characteristics at knock threshold operating condition. First, the threshold operating points of the mixtures have been obtained and the results indicated that the piston driving pressure reduces from 142 bars to 90 bars as the propane content in the mixture increases. As a spark plug was fitted in this RCM, the optimum spark timing was also investigated. It was established that spark timing should be set synchronize with the piston at TDC, due to the free movement of the piston. In most RCMs, piston can move toward TDC following the equilibria of forces due to the absence of con-rod. Finally, knock intensity of the different mixtures has been studied. Pre-heating system in RCM with and without trace heating system; effects of flow-rate and lambda variations on peak pressure, ignition delay time and ARR; threshold operating conditions of pure methane, 90% methane and 10% propane, 80% methane and 20% propane, 70% methane and 30% propane; effect of driving pressure on the knocking intensity for mixture of methane and propane for heavy and light knockings are presented in the article.
Źródło:
Journal of KONES; 2018, 25, 1; 339-346
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation into the effect of bore/stroke ratio on a single cylinder two stroke opposed piston engin
Autorzy:
Alqahtani, A. M.
Wyszynski, M. L.
Mazuro, P.
Powiązania:
https://bibliotekanauki.pl/articles/245226.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
opposed-piston
two-stroke
AVL Boost
thermodynamic modelling
Opis:
Opposed-piston (OP) engine’s promising fuel efficiency has attracted the interest of automotive industry in the recent years. The opposed-piston two-stroke (OP2S) engine technology heightens this fuel efficiency benefit and offers advances in structure, power density and thermal efficiency whilst sustaining its lower cost and weight. Today thermodynamic modelling remains an indispensable and cost effective route in the development and optimisation of internal combustion engines (ICEs). To achieve this goal, the OP2S engine is simulated and validated against experimental results in AVL Boost™, which is hailed as one of the most reliable and advanced engine simulation tools. Detailed analyses of the piston dynamics, heat release, scavenging and heat transfers are highlighted in discrete sections of this paper. Having compared distinct heat release models, the Wiebe 2-Zone model emerged efficacious in replicating the heat release characteristics of the PAMAR™ engine. In comparing the numerical and experimental results, the simulation revealed minimal differences in peak pressure, peak temperature and maximum pressure raise rate, under ±2.5% differences for indicated power, IMEP, indicated thermal efficiency (ITE) and ISFC. Subsequently, confidence taken from the validated numerical model is then deployed to investigate the effect of stroke-to-bore (S/B) ratio on OP2S performance. Three combinations of S/B ratios (0.5, 1.25, and 1.69) with identical swept volume are analysed in this study. Utilisation of the validated model ensured the standardisation of intake, exhaust and the combustion systems in order to isolate the effects of S/B ratio. Results indicate that heat losses decrease with increasing S/B ratio because of the reduced surface area-to-volume in the cylinder. Consequently, an improvement in ITE and mechanical efficiency is observed with reduced ISFC for higher S/B ratios. A tendency of upsurge in combustion efficiency is also evident for higher S/B ratio due to reduced heat transfer near minimum volume of the combustion chamber.
Źródło:
Journal of KONES; 2016, 23, 2; 9-16
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational modelling of the fuel injection and combustion in a Diesel K6 rotary engine
Autorzy:
Mason, M.
Wyszyński, M. L.
Jordan, O.
Gibson, D.
Powiązania:
https://bibliotekanauki.pl/articles/243793.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
combustion process
combustion factors
fuel injection
ANSYS Fluent code
Opis:
This paper outlines the methods and results of computations completed using the ANSYS Fluent code modelling the fuel injection and combustion within the K6 engine, a new form of rotary engine in which the fuel is injected in an arc across the top of the cylinder. The model uses the DPM Model in conjunction with a dynamic mesh and non-premixed combustion models to treat the injection as liquid diesel evaporating to C12H23. The outcomes of this model are presented in images displaying the distribution of temperature, and fuel and CO2 concentrations. The limitations pertaining to the maximum injection angles are also studied. The simulation is found to be effective and the results suggestive of successful, clean and complete combustion while presenting some matters, which require further investigation. The article presents temperature within the combustion chamber at various crank angle degrees, ) velocity of fluid within the combustion chamber, effects of impingement with injector offset on temperature and fuel concentration, fuel concentration demonstrating impingement, in cylinder temperature curve.
Źródło:
Journal of KONES; 2018, 25, 4; 263-276
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cycle-to-cycle variations of a diesel engine operating with palm biodiesel
Autorzy:
Yasin, M. H.
Mamat, R.
Abdullah, A. A.
Abdullah, N. R.
Wyszynski, M. L.
Powiązania:
https://bibliotekanauki.pl/articles/950092.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
cycle-to-cycle variations
biodiesel
combustion
diesel engine
Opis:
Biodiesel is one of biodegradable and renewable fuel, which is originated from vegetable oil or animal fats. Different fuel properties of biodiesel produce different combustion characteristics which slightly differ to mineral diesel. Combustion studies on palm-biodiesel and mineral diesel were conducted using a multi-cylinder diesel engine operating at medium engine load at 2500 rpm. The engine was water cooled inline four cylinder diesel engines without exhaust gas recirculation system. Cycle-to-cycle variations of peak cylinder pressure and mean indicated pressure of the test fuels were determined for the combustion characteristics of diesel engine. In-cylinder pressure data for the 200 consecutive cycles were determined using a Kistler pressure transducer and recorded into a combustion analyser. Three different engine loads: 20%, 40% and 60% were selected in this study with a constant engine speed of 2500 rpm. The results show that at lower load, in-cylinder pressure variations for palm biodiesel were lower compared to mineral diesel. However, at medium and high loads, palm biodiesel has dominated the peak cylinder variations. Different combustion cyclic variations for mineral diesel and B100 are observed and generally influenced by psychochemical properties differences including viscosity and density of fuel.
Źródło:
Journal of KONES; 2013, 20, 3; 443-450
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of injection pressure and strategy in a Jaguar V6 diesel engine
Autorzy:
Abdullah, N. R.
Mamat, R.
Rounce, P.
Wyszynski, M. L.
Tsolakis, A.
Xu, H. M.
Tian, G.
Powiązania:
https://bibliotekanauki.pl/articles/242414.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion
emissions
injection strategies
premixed combustion
ignition delay
Opis:
In recent years, the improvement of engine performance and emissions has become an extremely important concern. This study focuses on the injection strategy based on the injection pressure (IP) and duration between pilot injection and the main injection (dMI) using a multi cylinder common rail multiple injections diesel engine. The study was designed to produce improvements in fuel mixing via the injection strategy, to reduce the main ignition delay. This would contribute to a minimum amount of fuel burnt in the premixed combustion phase, leading to a reduction in emissions. Recent evidence shows that premixed combustion is significant in the controlling of emissions of nitrogen oxides (NOx) and soot. Six different IPs combined with a short and long dMI were compared in the attempt to improve engine performance and emissions. The engine performance was measured in terms of brake specific fuel consumption, ignition delay, heat release and peak in-cylinder pressure and emissions, specifically nitrogen oxides (NOx), total unburned hydrocarbons (THC), carbon monoxide (CO) and smoke emissions for each engine test condition. The evidence from this study shows that the effect of IP is more dominant than dMI in terms of peak cylinder pressure, heat release, brake specific fuel consumption and emissions. However, the dMI shows a strong effect at a higher engine speed.
Źródło:
Journal of KONES; 2009, 16, 2; 9-22
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation into particulate size distributions in the exhaust gas of diesel engines fuelled with biodiesel blends
Autorzy:
Chuepeng, S.
Theinnoi, K.
Xu, H. M.
Wyszynski, M. L.
York, A. P. E.
Hartland, J. C.
Qiao, J.
Powiązania:
https://bibliotekanauki.pl/articles/248072.pdf
Data publikacji:
2008
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
biodiesel
PM
combustion
diesel
PM size distribution
Opis:
Particulate matter (PM) size distributions in the exhaust gas of biodiesel blend fuelled diesel engines have been studied by experimenting firstly on a single cylinder equipped with a pump-line-injector injection system and secondly for comparison on a V6 DI engine equipped with a common rail fuel injection system. Both engines were operated with a biodiesel (RME) blend of B30 and ultra low sulphur diesel fuel (ULSD). Several engine load conditions with and without exhaust gas recirculation (EGR) were selected. Particulate number concentrations vs. the electrical mobility equivalent diameter were examined using a fast differential mobility spectrometer. The effect of engine operating conditions including EGR rates on particulate emissions has been investigated. It is found that PM sizes from combustion of B30 without EGR operation are generally smaller than those from ULSD while number concentrations are higher. This can result in lower PM mass estimates for the B30 case if due care is not taken. When EGR is applied to control nitrogen oxides emissions, both the total PM number and mass are increased and shifted toward the larger sizes for both fuels used in the test. The calculated total PM mass from B30 combustion is lower than in the ULSD case for all the tested engine operating conditions.
Źródło:
Journal of KONES; 2008, 15, 3; 75-82
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies