Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy expert system" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
The use of fuzzy expert system for an automatic control of the propulsion system in the aircraft ZLIN 143LSi
Autorzy:
Krok, B.
Grzesik, N.
Kuźma, K.
Powiązania:
https://bibliotekanauki.pl/articles/242523.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
fuzzy logic
fuzzy expert system
propulsion system
aircraft Zlin 143LSi
Opis:
The article discusses the manner of controlling the propulsion system in the aircraft Zlin 143LSi, which is equipped with a piston engine driving a variable-pitch propeller. All the operating procedures are carried out manually by the pilot in accordance with the flight manual. The authors attempted at developing the project of a controller based on fuzzy logic, whose main goal was automating the control system of the propulsion unit, thus lowering the level of difficulty of pilotage, and increasing the economics of the operation. The project was made in an interactive environment FuzzyLogic Toolbox of the MATLAB programme. In the analysis, three input parameters were taken into account, exerting an impact on changing the rotational speed of the propeller: the charging pressure of the propulsion unit expressed in inches of mercury, the speed of the aircraft (TAS) in knots and the angle of attack, at which the flight is made, expressed in degrees. On the basis of the above-mentioned input signals, the rotation speed of the propeller was determined, by changing the blade pitch and the recommended angle of attack for the parameters in order to make an optimal use of the data of the flight conditions. The article presents the project of the controller and its optimization. The authors simulated the controller operation in the package MATLAB “Simulink”. The article ends with data analysis and final conclusions.
Źródło:
Journal of KONES; 2018, 25, 3; 307-314
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aircraft docking guidance system to the gate using fuzzy logic
Autorzy:
Żurawski, P.
Grzesik, N.
Kuźma, K.
Powiązania:
https://bibliotekanauki.pl/articles/243957.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
fuzzy logic
fuzzy expert system
aircraft taxiing
aircraft steering
Opis:
The article presents the concept of automated final process of aircraft taxiing to the gate at the terminal. On the basis of an analysis of the possibilities of aircraft taxiing in civil airports, the authors attempted at optimizing this process. The main objective of the project is to reduce the taxiing time, consequently reducing fuel consumption as well as the rotation time. As a result of the work, the authors designed a controller based on fuzzy logic, which, depending on the initial parameters, calculates the set values for the execution system of aircraft control in the horizontal plane and for the taxi speed. The controller receives two input signals, which determine two output signals. The designed controller allows comprehensive and fully automated aircraft steering. The project relies on data with regard to the apron class D, suited to handle aircraft with a wingspan of up to 52 m and the characteristics of a Boeing 767-200 in speed taxiing and the maximum turn of the nose gear. The measurements of the apron have been adopted in accordance with international regulations in the ICAO DOC 9157 “Aerodrome Design Manual”. The maximum deviation of the nose gear from the centre line was assumed 2.5 m in each direction and a safe distance behind the immobile aircraft equal to 25 m. The length of the Boeing aircraft 767-200 is below 48 m, therefore the input boundary parameters are equal to +/- 2.5 m from the centre line and 80 m from the designated aircraft stand (nose gear). The article presents the project of the controller and its optimization. The authors simulated the controller operation in the package MATLAB “Simulink”. The article ends with data analysis and final conclusions.
Źródło:
Journal of KONES; 2018, 25, 3; 549-556
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using fuzzy logic expert system for the estimation of the probability of armour penetration by PGU-14 shells fired from the GAU-8/A CA
Autorzy:
Opala, P.
Grzesik, N.
Kuźma, K.
Powiązania:
https://bibliotekanauki.pl/articles/245144.pdf
Data publikacji:
2017
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
fuzzy logic
fuzzy expert system
armour penetration
GAU-8/A cannon
PGU 14 API shells
Opis:
The article discusses the possibility of armour penetration by PGU 14 API shells fired from the GAU-8/A cannon. The considerations focus on questions with regard to the probability of armour penetration with the initially established conditions in the project. In the analysis, the authors took into account three parameters: armour thickness, armour slope and target distance. Based on the initial parameters, the authors estimated the probability of armour penetration. The designed a fuzzy expert system in the MATLAB software as well as conducting simulation of its performance in the Simulink programmes. The authors presented the performance of the system based on twenty samples for research, which simulate different thickness of the target armour, different distance from the target and different slope of the armour. The authors presented control surfaces, due to which it is possible to analyse the system performance. They also show the simulation process in the Simulink software package with the preset values. On the basis of the created controller, it is clear that a well-developed system, which had undergone testing and optimization, is capable of calculating near reality probability values. The designed system might improve fire effectiveness of ground targets during air training and combat tasks, as well as optimizing the consumption of air-to-ground armour piercing (AP) shells.
Źródło:
Journal of KONES; 2017, 24, 4; 211-218
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An application of intuitionistic fuzzy analytic hierarchy process in ship system risk estimation
Autorzy:
Nguyen, H.
Powiązania:
https://bibliotekanauki.pl/articles/244796.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
intuitionistic fuzzy sets
risk estimation
expert judgment
ship propulsion system
analytic hierarchy process (AHP)
sea transport
Opis:
In this paper, we extend the analytic hierarchy process (AHP) method and the Atanassov’s intuitionistic fuzzy set (IFS) into the intuitionistic fuzzy analytic hierarchy process (IFAHP) with application in ship system risk estimation. In the safety engineering, risk estimation is in practice confronted with difficulties connected with shortage of data. In such cases, we have to rely on subjective estimations made by persons with practical knowledge in the field of interest, i.e. experts. However, in some realistic situations, the decision makers might be reluctant or unable to assign the crisp evaluation values to the comparison judgments due to his/her limited knowledge. In other words, there is a certain degree of hesitancy in human cognition and his judgment. Taking advantages of IFSs in dealing with ambiguity and uncertainty into account, the IFAHP can be used to handle with the subjective preferences of experts, who may have insufficient knowledge of the problem domain or uncertainty in assigning the evaluation values to the objects considered. This paper also develops a new knowledge-based ranking method to derive the priority vector of the hierarchy. An illustrative example of the propulsion risk estimation of container carriers operating on the North Atlantic line is given to show the applicability and effectiveness of the proposed method.
Źródło:
Journal of KONES; 2016, 23, 3; 365-372
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interval-valued intuitionistic fuzzy failure modes and effect analysis of the system failure risk estimation
Autorzy:
Nguyen, H.
Powiązania:
https://bibliotekanauki.pl/articles/243789.pdf
Data publikacji:
2017
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
interval-valued intuitionistic fuzzy sets
failure modes
effects analysis
system failure risk estimation
expert judgment
Opis:
Among the risk assessment methods, failure modes and effects analysis (FMEA) is a popular, widely used engineering technique in many areas. It can be used to identify and eliminate known or potential failure modes to enhance reliability and safety of complex systems. In practice, risk estimations encounter difficulties connected with shortage of data. In such cases, we have to rely on subjective estimations made by persons with practical knowledge in the field of interest, i.e. experts. However, in some realistic situations, the decision makers might be unable to assign the exact values to the evaluation judgments due to his/her limited knowledge. In other words, there is a certain degree of hesitancy in human cognition and his/her judgment, who may have insufficient knowledge of the problem domain or uncertainty in assigning the evaluation values to the objects considered. In order to deal with ambiguity and uncertainty in the imperfect information, there have been recently proposed many various such theories as fuzzy sets, interval-valued fuzzy sets, type-2 fuzzy sets, hesitant sets, grey sets, rough sets and intuitionistic fuzzy sets. They have drawn more and more attention of scholars and been adopted in many applications This article addresses the Atanassov’s interval-valued intuitionistic fuzzy sets and FMEA methods in the risk estimation of the system failures based on the expert judgments.
Źródło:
Journal of KONES; 2017, 24, 2; 159-166
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies