Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "uczenie głębokie." wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Hybrid deep learning method for detection of liver cancer
Autorzy:
Deshmukh, Sunita P.
Choudhari, Dharmaveer
Amalraj, Shankar
Matte, Pravin N.
Powiązania:
https://bibliotekanauki.pl/articles/38701864.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
liver cancer detection
deep learning
fully convolutional neural network
hybrid approach
discrete wavelet transform
wykrywanie raka wątroby
uczenie głębokie
neuronowa sieć konwulcyjna
podejście hybrydowe
dyskretna transformata falkowa
Opis:
Liver disease refers to any liver irregularity causing its damage. There are several kinds of liver ailments. Benign growths are rarely life threatening and can be removed by specialists. Liver malignant tumor is leading causes of cancer death. Identifying malignant growth tissue is a troublesome and tedious task. There is significantly less information and statistical analysis presented related to cholangiocarcinoma and hepatoblastoma. This research focuses on the image analysis of these two types of cancer. The framework’s performance is evaluated using 2871 images, and a dual hybrid model is used to accomplish superb exactness. The aftereffects of both neural networks are sent into the result prioritizer that decides the most ideal choice for image arrangement. The relevance of elements appears to address the appropriate imaging rules for each class, and feature maps matching the original picture voxel features. The significance of features represents the most important imaging criteria for each class. This deep learning system demonstrates the concept of illuminating elements of a pre-trained deep neural network’s decision-making process by an examination of inner layers and the description of attributes that contribute to predictions.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 2; 151-165
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning-based business rule engine data transformation over high-speed networks
Autorzy:
Neelima, Kenpi
Vasundra, S.
Powiązania:
https://bibliotekanauki.pl/articles/38700094.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
CRISP-DM
data mining algorithms
business rule
prediction
classification
machine learning
deep learning
AI design
algorytmy eksploracji danych
reguła biznesowa
prognoza
klasyfikacja
nauczanie maszynowe
uczenie głębokie
projekt Sztucznej Inteligencji
Opis:
Raw data processing is a key business operation. Business-specific rules determine howthe raw data should be transformed into business-required formats. When source datacontinuously changes its formats and has keying errors and invalid data, then the effectiveness of the data transformation is a big challenge. The conventional data extraction andtransformation technique produces a delay in handling such data because of continuousfluctuations in data formats and requires continuous development of a business rule engine.The best business rule engines require near real-time detection of business rule and datatransformation mechanisms utilizing machine learning classification models. Since data iscombined from numerous sources and older systems, it is challenging to categorize andcluster the data and apply suitable business rules to turn raw data into the business-required format. This paper proposes a methodology for designing ensemble machine learning techniques and approaches for classifying and segmenting registered numbersof registered title records to choose the most suitable business rule that can convert theregistered number into the format the business expects, allowing businesses to provide customers with the most recent data in less time. This study evaluates the suggested modelby gathering sample data and analyzing classification machine learning (ML) models todetermine the relevant business rule. Experimentation employed Python, R, SQL storedprocedures, Impala scripts, and Datameer tools.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 1; 55-71
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification and segmentation of periodontal cystfor digital dental diagnosis using deep learning
Autorzy:
Lakshmi, T. K.
Dheeba, J.
Powiązania:
https://bibliotekanauki.pl/articles/38700996.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
CNN
dental radiograph
deep learning
health care
machine transfer learning
periodontal cyst
predictive analytics
segmentation
U-Net
VGG16
rentgenowskie zdjęcie zębów
uczenie głębokie
opieka zdrowotna
uczenie się z transferu maszynowego
torbiel przyzębia
analityka predykcyjna
segmentacja
Opis:
The digital revolution is changing every aspect of life by simulating the ways humansthink, learn and make decisions. Dentistry is one of the major fields where subsets ofartificial intelligence are extensively used for disease predictions. Periodontitis, the mostprevalent oral disease, is the main focus of this study. We propose methods for classifyingand segmenting periodontal cysts on dental radiographs using CNN, VGG16, and U-Net.Accuracy of 77.78% is obtained using CNN, and enhanced accuracy of 98.48% is obtainedthrough transfer learning with VGG16. The U-Net model also gives encouraging results.This study presents promising results, and in the future, the work can be extended withother pre-trained models and compared. Researchers working in this field can develop novelmethods and approaches to support dental practitioners and periodontists in decision-making and diagnosis and use artificial intelligence to bridge the gap between humansand machines.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 2; 131-149
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies