Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Magazynowanie" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
Badania interakcji zachodzących w układzie wodór–skała zbiornikowa–solanka w symulowanych warunkach złożowych
Investigations of interactions occurring in the hydrogen–reservoir rock–formation water system In simulated reservoir conditions
Autorzy:
Wojtowicz, Katarzyna
Steliga, Teresa
Jakubowicz, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/31343908.pdf
Data publikacji:
2023
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
magazynowanie
reaktywność
wodór
hydrogen
storage
reactivity
Opis:
W artykule przedstawiono zagadnienia związane z magazynowaniem wodoru w wyeksploatowanych formacjach geologicznych oraz z możliwością wystąpienia interakcji w układach wodór–skała–woda złożowa. Badania kontaktowe prowadzono z wykorzystaniem: materiału skalnego (rdzeń A) o składzie mineralogicznym – kalcyt 99,6%, kwarc 0,4%; trzech rodzajów gazów o różnych stężeniach wodoru (wodór 100%, mieszanina metanu i wodoru w stosunku 84% obj. do 16% obj. oraz mieszanina metanu i wodoru w stosunku 94% obj. do 6% obj.) oraz wody złożowej opracowanej w laboratorium. Określenia interakcji mogących zachodzić w układzie wodór–skała–woda złożowa dokonano na podstawie przeprowadzonych symulacji możliwości wytrącania lub rozpuszczania się składników w układzie za pomocą programu PHREEQC, analiz chromatograficznych fazy gazowej, analiz pierwiastkowych próbek rdzeni z wykorzystaniem metody fluorescencji rentgenowskiej (XRF), analiz mineralogicznych próbek rdzeni z wykorzystaniem metody dyfrakcji rentgenowskiej (XRD) oraz analiz fizykochemicznych wody złożowej przed testami i po ich zakończeniu (metoda chromatografii jonowej oraz spektrofotometryczna). Symulacja możliwości wytrącania lub rozpuszczania się osadów w układzie wodór–rdzeń A–woda złożowa wskazała na wysoki potencjał do rozpuszczania się anhydrytu i gipsu w badanej wodzie złożowej pod wpływem wzrostu stężenia wodoru w układzie. Poza tym w układach: wodór(16%)–rdzeń A–woda złożowa oraz wodór(100%)–rdzeń A–woda złożowa po zakończeniu testów kontaktowych stwierdzono obecność siarkowodoru w ilości odpowiednio 1,74 mg/dm3 oraz 5,98 mg/dm3 . Przeprowadzone analizy elementarne oraz mineralogiczne rdzeni nie wykazały istotnych zmian w ich składzie w wyniku kontaktu z wodorem, natomiast analiza fizykochemiczna wody złożowej potwierdziła możliwość oddziaływania wodoru na materiał skalny oraz wodę złożową. Na podstawie przeprowadzonych testów kontaktowych stwierdzono, że wraz ze wzrostem stężenia wodoru w gazie wzrasta prawdopodobieństwo wystąpienia interakcji pomiędzy wodorem, materiałem skalnym i wodą złożową.
The article presents issues related to hydrogen storage in exploited geological formations and the possibility of interactions in hydrogen–reservoir rock–formation water systems. Contact studies were carried out using rock material (core A) with a mineralogical composition of 99.6% calcite, 0.4% quartz, three types of gases with different concentrations of hydrogen (100% hydrogen, a mixture of methane and hydrogen in a percentage ratio of 84% to 16 % and a mixture of methane and hydrogen in a percentage ratio of 94% to 6%) and formation water developed in the laboratory. The determination of interactions that may occur in a hydrogen-reservoir rock-formation water system was based on simulations of the possibility of precipitation or dissolution of analytes in the system using the PHREEQC program, chromatographic analyses of the gas phase, elemental analyses of core samples using the X-ray fluorescence method (XRF), mineralogical analyses of samples cores using the X-ray diffraction (XRD) method and physico-chemical analyses of the formation water before and after the tests (ion chromatography and spectrophotometric methods). Simulation of the possibility of precipitation or dissolution of sediments in the hydrogen-core A-formation water system showed a high potential for dissolution of anhydrite and gypsum in the studied formation water under the influence of increasing hydrogen concentration in the system. In addition, in the hydrogen(16%)–core A–formation water and hydrogen(100%)–core A–formation water systems, the presence of hydrogen sulphide was found after contact tests in the amount of 1.74 mg/dm3 and 5.98 mg/dm3 , respectively. The elemental and mineralogical analyses of the cores showed no significant changes in their composition after contact with hydrogen, while the physical and chemical analysis of the formation water confirmed the possibility of hydrogen affecting the rock material and the formation water. Based on the conducted contact tests, it was found that the higher the concentration of hydrogen in the gas, the greater the likelihood of interactions between hydrogen, rock material and formation water.
Źródło:
Nafta-Gaz; 2023, 79, 5; 316-325
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie niekorzystnych zmian w oleju napędowym zachodzących w czasie jego magazynowania
The study of adverse changes in diesel fuel during its storage
Autorzy:
Żółty, Magdalena
Lubowicz, Jan
Powiązania:
https://bibliotekanauki.pl/articles/1834962.pdf
Data publikacji:
2019
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
diesel fuel
storage
defoamers
depressants
olej napędowy
magazynowanie
dodatki przeciwpienne
depresatory
Opis:
W ramach pracy przeprowadzono badania wpływu procesu magazynowania na parametry jakościowe oleju napędowego zawierającego 7% (V/V) FAME, zaprojektowano i skonstruowano sześć stanowisk badawczych do przechowywania paliwa. Do ich budowy wykorzystano materiały odporne na działanie olejów napędowych zawierających estry metylowe kwasów tłuszczowych. Do badań wytypowano dodatki (dwa przeciwpienne i jeden depresator, które mogą być dodawane do paliwa na każdym etapie jego produkcji w postaci pakietu lub jako niezależne dodatki) podejrzane o wypadanie z formulacji oleju napędowego w czasie magazynowania i przyczynianie się w ten sposób do niestabilności jego właściwości fizykochemicznych i użytkowych. Z udziałem wyżej wymienionych dodatków zestawiono sześć próbek na bazie oleju napędowego zakupionego na stacji paliw. Autorzy przyjęli, że warunki magazynowania będą odpowiadały średniej rocznej temperaturze i wilgotności powietrza w Polsce. W celu zapewnienia powyższych warunków stanowiska badawcze wraz z badanymi próbkami paliwa umieszczono na okres sześciu tygodni w komorze klimatycznej. Zakres prowadzonych badań fizykochemicznych i użytkowych był szeroki i dobrany w taki sposób, aby monitorować właściwości oleju napędowego pod kątem ich niezmienności w czasie magazynowania. Głównie chodzi o właściwości, które pozwalały na potwierdzenie hipotezy dotyczącej problemów ze stabilnością dodatków przeciwpiennych i depresatorów w paliwie. Przebadano próbki wyjściowe oraz próbki pobrane po 3 i 6 tygodniach przechowywania w komorze klimatycznej z warstwy górnej i warstwy dennej stanowisk badawczych. Uzyskano dość niejednoznaczne wyniki badań. Wyniki oznaczenia skłonności do pienienia badanych próbek olejów napędowych nie pozwoliły na jednoznaczne potwierdzenie lub obalenie stawianej w pracy hipotezy. W przypadku depresatora na podstawie wyników właściwości niskotemperaturowych, głównie temperatury zablokowania zimnego filtru, można zauważyć niewielką tendencję do kumulowania się go w niższych warstwach paliwa w stanowiskach badawczych. Stabilność oksydacyjna badanych próbek paliw utrzymywała się przez cały okres magazynowania na niemal niezmiennym, wysokim poziomie. Nie zaobserwowano zdecydowanych różnic pomiędzy wynikami oznaczonymi dla próbek pobranych z warstwy górnej i z dolnej, co pozwala na stwierdzenie, że dodatki przeciwutleniające utrzymują się w paliwie niezależnie od czasu magazynowania. Wyniki oznaczenia tendencji do blokowania filtra świadczą o niewielkiej ilości zanieczyszczeń i składników w badanych olejach napędowych, które pogarszałyby ich filtrowalność. Z kolei wyniki oznaczenia tendencji do blokowania filtra po wychłodzeniu CSFBT(-1) mogą świadczyć o problemach z odpowiednio szybkim wkomponowywaniem się depresatora do formuły paliwa. Pomimo stosunkowo dużej wilgotności powietrza, wahającej się w dość szerokim zakresie, zawartość wody w badanych próbkach oleju napędowego nie zmieniała się w dużym stopniu w czasie magazynowania.
Research on the impact of the storage process on the quality parameters of diesel oil containing 7% (V/V) FAME was carried out and six test stands for fuel storage were designed and constructed as part of the work. Their construction was based on materials resistant to diesel oil containing fatty acid methyl esters. The tests involved the selection of additives (two defoaming agents and one depressant, which can be added to the fuel at each stage of its production in the form of a package or as independent additives), which are suspected of drop out of the diesel fuel formulation during storage, which favors instability of its physicochemical and utility properties. Based on the diesel fuel purchased at the petrol station, the abovementioned additives were used to compose six samples. The authors assumed that the storage conditions represented the average annual temperature and humidity in Poland. In order to ensure the above conditions, the test stands together with the tested fuel samples were placed for a period of six weeks in a climatic chamber. The scope of physicochemical and applied tests was wide and selected in such a way as to monitor the properties of diesel oil for their constancy during storage. The test properties included mainly those that allowed to confirm the hypothesis regarding problems with the stability of defoamers and depressants in fuel. The initial samples and the samples collected after three and six weeks of storage in the climatic chamber from the upper layer and the bottom layer of the test stands were subjected to testing. The tests outcome quite ambiguous. The results of the determination of the foaming tendency of the tested diesel oil samples did not allow for unambiguous confirmation or refutation of the hypothesis of the work. In the case of a depressant, based on the results of low temperature properties, mainly the temperature of blocking the cold filter, a slight tendency to accumulate it in the lower layers of fuel in test stands could be observed. Oxidation stability of the tested fuel samples was maintained throughout the storage period at an almost constant, high level. There were no significant differences between the results determined for the samples taken from the upper and lower layers, which allows to conclude that antioxidant additives remain in the fuel regardless of the time of storage. The results of the determination of tendency to blocking the filter indicate a small amount of impurities and components in the tested diesel fuels that would impair its filterability. On the other hand, the results of the determination of the tendency to blocking the filter after cooling down CSFBT (–1) may indicate problems with the depressant fast enough integration into fuel formula. In spite of the relatively high humidity, varying in a fairly wide range, the water content in the tested diesel fuel samples did not change to a large extent during storage.
Źródło:
Nafta-Gaz; 2019, 75, 10; 640-648
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania zaczynów cementowych przeznaczonych do uszczelniania kolumn rur okładzinowych w podziemnych magazynach wodoru w sczerpanych złożach węglowodorów
Research of cement slurries for sealing casing strings in underground hydrogen storage facilities in depleted hydrocarbon reservoirs
Autorzy:
Rzepka, Marcin
Kędzierski, Miłosz
Powiązania:
https://bibliotekanauki.pl/articles/31343917.pdf
Data publikacji:
2023
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
zaczyn cementowy
kamień cementowy
magazynowanie wodoru
cement slurry
cement stone
hydrogen storage
Opis:
Prezentowany artykuł omawia zagadnienia dotyczące technologii zaczynów cementowych proponowanych do uszczelniania kolumn rur okładzinowych w podziemnych magazynach wodoru w sczerpanych złożach węglowodorów. Do badań laboratoryjnych wytypowano dziesięć receptur zaczynów zawierających różne dodatki i domieszki (m.in. nanomateriały, tj. nano-SiO2, nano-Al2O3, lateksy, polimery wielkocząsteczkowe). Badania receptur prowadzono w temperaturze 60°C pod ciśnieniem 25 MPa, stosując w składach zaczynów domieszkę odpieniającą, upłynniającą, antyfiltracyjną oraz opóźniacz wiązania. Badania wykonywano na dwóch rodzajach cementów: portlandzkim CEM I 42,5 oraz wiertniczym klasy G. Określano parametry technologiczne świeżych i stwardniałych zaczynów cementowych, badając: gęstość, odstój wody (wolną wodę), reologię, czasy gęstnienia, a także wytrzymałość na ściskanie, porowatość oraz szczelność rdzeni cementowych względem wodoru. Płynne zaczyny cementowe posiadały prawidłowe parametry technologiczne (były dobrze przetłaczalne w warunkach HPHT, a ich gęstości wynosiły 1,80–1,91 g/cm3 ). Wytrzymałości na ściskanie stwardniałych zaczynów cementowych po okresie od 2 dni do 28 dni hydratacji, zwłaszcza w przypadku próbek z dodatkiem nanokomponentów, przyjmowały bardzo wysokie wartości (po 28 dniach przekraczając 40 MPa). Próbki kamieni cementowych posiadały bardzo niską zawartość porów kapilarnych, co ogranicza możliwość tworzenia się kanalików w płaszczu cementowym otworu wiertniczego. W większości próbek pory o najmniejszych rozmiarach (poniżej 100 nm) stanowiły zdecydowaną większość (powyżej 95–97%) ogólnej ilości porów występujących w matrycy cementowej. Najkorzystniejsze parametry technologiczne uzyskano w przypadku próbek zawierających nano-SiO2 (nanokrzemionkę), a optymalny współczynnik wodno-cementowy dla takich zaczynów kształtował się na poziomie około 0,46–0,48 – w zależności od rodzaju zastosowanego cementu. Najniższe wartości przenikalności dla wodoru zanotowano dla receptur zawierających nanokrzemionkę (nano-SiO2). Receptury o najlepszych parametrach technologicznych, zawierające nanokomponenty (po wykonaniu szczegółowych testów), będą mogły znaleźć zastosowanie podczas uszczelniania rur okładzinowych w otworach wierconych w celu magazynowania wodoru.
The article presents issues related to the technology of cement slurries for sealing casing pipes in underground hydrogen storage facilities in depleted hydrocarbon reservoirs. Ten recipes of slurries containing various ingredients (including nanomaterials, i.e. nanoSiO2, nano-Al2O3, latexes, high-molecular polymers) were selected for laboratory tests. The tests were carried out at a temperature of 60°C and a pressure of 25 MPa, using defoaming, fluidizing, antifiltration admixtures and setting time retardant in the slurry compositions. The tests were carried out on two types of cement: Portland CEM I 42.5 and class G drilling cement. Technological parameters of fresh and hardened cement slurries were determined by examining the following: density, water retention (free water), rheology, thickening times as well as compressive strength, porosity and hydrogen tightness of cement cores. The liquid cement slurries had the correct technological parameters (they were well pumpable under HPHT conditions and their densities ranged from 1.80–1.91 g/cm3 ). The compressive strength of cement stones in the period from 2 days to 28 days of hydration, especially for samples with the addition of nanocomponents, was very high (after 28 days exceeding 40 MPa). The samples of cement stones had a very low content of capillary pores, which limits the possibility of forming channels in the cement sheath of the borehole. For most samples, the smallest pores (below 100 nm) accounted for the vast majority (over 95–97%) of the total number of pores in the cement matrix. The most favorable technological parameters were obtained for samples containing nano-SiO2 (nanosilica) and the optimal water-cement ratio for such slurries was around 0.46–0.48, depending on the type of cement used. The lowest hydrogen permeability values were obtained for formulations containing nanosilica (nano-SiO2). Recipes offering the best technological parameters, containing nanocomponents (after detailed tests), may be used when sealing casing pipes in holes drilled for hydrogen storage.
Źródło:
Nafta-Gaz; 2023, 79, 4; 244-251
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rodzaje zanieczyszczeń i sposoby oczyszczania wodoru magazynowanego w kawernach solnych w aspekcie zastosowania go w urządzeniach wytwarzających energię
Types of impurities and methods of purifying hydrogen stored in salt caverns in terms of application to energy generating devices
Autorzy:
Janocha, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2143286.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
magazynowanie wodoru w kawernach
zanieczyszczenia
wodór
oczyszczanie wodoru
hydrogen storage in caverns
hydrogen
impurities
hydrogen purification
Opis:
W artykule dokonano skondensowanego przeglądu literatury na temat podziemnych magazynów gazu (PMG) w kawernach solnych. Przedstawiono analizę możliwości powstawania zanieczyszczeń podczas magazynowania wodoru w kawernach solnych. Część zanieczyszczeń może powstać w początkowej fazie oddawania komory solnej do używania i napełniania, a część – w związku z zachodzącymi procesami chemicznymi i mikrobiologicznymi w trakcie użytkowania kawerny i jej wyposażenia. Wcześniejsze badania wykonane przez Instytut Nafty i Gazu – Państwowy Instytut Badawczy w kawernach magazynujących gaz ziemny wykazały obecność pyłów i składników kwaśnych. Oznacza to, że podobnych zagrożeń można się spodziewać przy magazynowaniu wodoru w kawernach solnych. W trakcie prowadzenia prac wiertniczych, a następnie w procesie ługowania komory solnej mogą pozostać w niej składniki, które przez pewien czas mogą generować zanieczyszczenia. Źródłem zanieczyszczeń może być woda słodka używana do ługowania kawerny. Często stosowana jest woda rzeczna (lub ściekowa), która jest tylko filtrowana w celu usunięcia cząstek stałych. Mechanizmy zanieczyszczenia gazowego kawern solnych są także wywoływane obecnością wprowadzonych tam bakterii. Żyją one w komorze solnej na dnie i w obecności siarczanów i węglanów pobierają wodór, wytwarzając H2S i/lub metan. W kolejnej części artykułu wyszczególniono wymagania czystości i zawilgocenia wodoru przerabianego na energię elektryczną: bardzo rygorystyczne wymagania w przypadku ogniw paliwowych i dużo łagodniejsze w przypadku turbin. Następnie przedstawiono oryginalne badania i obliczenia symulacyjne procesu osuszania wodoru z zastosowaniem instalacji glikolowej z wykorzystaniem programu ChemCAD. Uzyskano osuszenie wodoru z zawartością wody na poziomie 0,00048% mol. W końcowej części artykułu dokonano syntetycznego przeglądu technologii oczyszczania wodoru. Wyszczególniono kilka grup metod oczyszczania wodoru. Pierwsza technologia jest oparta na adsorpcji zmiennociśnieniowej gazów PSA. Technologia separacji kriogenicznej nie w pełni pozwala na bezpośrednie wykorzystanie produktu wodorowego do ogniw paliwowych. Trzecią grupą technologii oczyszczania wodoru jest zastosowanie różnych typów membran, z których tylko część pozwala na uzyskanie bardzo wysokiej jakości wodoru. Na otrzymanie najwyższego stopnia czystości wodoru (6N) pozwala technologia elektrochemicznego oczyszczania. System ten oparty jest na membranie do wymiany protonów (PEM-EHP).
The article presents a condensed literature review on underground gas storage (UGS) in salt caverns. An analysis of the possibility of formation of pollution during hydrogen storage in salt caverns is presented. Some of the contaminants may appear in the initial phase of cavern completion and filling, and some due to the ongoing chemical and microbiological processes during the use of the cavern and its equipment operation. Earlier research carried out by the Oil and Gas Institute – National Research Institute in the caverns storing natural gas showed the presence of dust and acid components. This means that similar hazards can be expected when storing hydrogen in salt caverns. During the drilling operation and then in the salt chamber leaching process, components may remain in it, which may generate contamination for some time. The source of contamination may be the freshwater used to leach the cavern. Often, this is river (or sewage) water that is only filtered from solid particles. The mechanisms of gas pollution of salt caverns are also caused by the presence of bacteria introduced there. They live in a salt cavern at the bottom and in the presence of sulphates and carbonates they take up hydrogen, producing H2S and/or methane. The next part of the article lists the requirements for the purity and moisture of hydrogen converted into electricity: very stringent requirements for fuel cells and much milder requirements for turbines. Then, original tests and simulation calculations of the hydrogen drying process were carried out with the use of a glycol installation with the use of the ChemCAD program. Hydrogen was dried with a water content of 0.00048 mol%. At the end of the article, a synthetic review of the hydrogen purification technology is made. Several groups of hydrogen purification methods have been specified. The PSA technology is based on gas adsorption. The cryogenic separation technology does not fully allow the direct use of the hydrogen product in fuel cells. The third group of hydrogen purification technologies is the use of various types of membranes, only some of which allow for obtaining very high-quality hydrogen. The electrochemical purification technology allows to obtain the highest degree of hydrogen purity (6N). The system is based on a proton exchange membrane (PEM-EHP).
Źródło:
Nafta-Gaz; 2022, 78, 4; 288-298
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Magazynowanie wodoru w obiektach geologicznych
Storage of hydrogen in geological structures
Autorzy:
Such, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1833953.pdf
Data publikacji:
2020
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
wodór
podziemne magazynowanie
wyeksploatowane złoża gazu
kawerny solne
hydrogen
underground storage
exploited gas reservoirs
salt caverns
Opis:
Hydrogen economy became one of the main directions in EU’s Green Deal for making Europe climate neutral in 2050. Hydrogen will be produced with the use of renewable energy sources or it will be obtained from coking plants and chemical companies. It will be applied as ecological fuel for cars and as a mix with methane in gas distribution networks. Works connected with all aspects of hydrogen infrastructure are conducted in Poland. The key problem in creating a hydrogen system is hydrogen storage. They ought to be underground (RES) because of their potential volume. Three types of underground storages are taken into account. There are salt caverns, exploited gas reservoirs and aquifers. Salt caverns were built in Poland and now they are fully operational methane storages. Oli and Gas Institute – National Research Institute has been collaborating with the Polish Oil and Gas Company since 1998. Salt cavern storage exists and is used as methane storages. Now it is possible to use them as methane-hydrogen mixtures storages with full control of all operational parameters (appropriate algorithms are established). Extensive study works were carried out in relation to depleted gas reservoirs/aquifers: from laboratory investigations to numerical modelling. The consortium with Silesian University of Technology was created, capable of carrying out all possible projects in this field. The consortium is already able to undertake the project of adapting the depleted field to a methane-hydrogen storage or, depending on the needs, to a hydrogen storage. All types of investigations of reservoir rocks and reservoir fluids will be taken into consideration.
Źródło:
Nafta-Gaz; 2020, 76, 11; 794--798
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interakcja wodoru ze skałą zbiornikową
Interaction of hydrogen with reservoir rock
Autorzy:
Cicha-Szot, Renata
Leśniak, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/31348148.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
magazynowanie wodoru
interakcja
skała
solanka
wodór
rozpuszczanie
minerał
hydrogen storage
rock
brine
hydrogen
interaction
dissolution
mineral
Opis:
Istnieje szereg metod magazynowania wodoru, do których zaliczyć można stosowanie zbiorników napowierzchniowych, wiązanie w wodorkach metali, nanorurkach węglowych, sieciach metaloorganicznych, ciekłych organicznych nośnikach wodoru czy adsorbentach. Jednak to podziemne magazynowanie wodoru w strukturach geologicznych (PMW) wydaje się kluczowe dla rozwiązania problemu długoterminowego magazynowania dużych ilości energii oraz zwiększenia stabilności sieci energetycznej i poprawy wydajności systemów energetycznych. Kryteria wyboru struktury do magazynowania wodoru obejmują szereg czynników technicznych, ekonomicznych, ekologicznych i społecznych. Jednym z najmniej rozpoznanych obszarów badawczych dotyczących PMW jest utrata wodoru in situ wywołana reakcjami geochemicznymi, które mogą wpływać na parametry petrofizyczne oraz wytrzymałość skał uszczelniających. W artykule przeanalizowano reakcje, jakie mogą wystąpić podczas magazynowania wodoru w strukturach geologicznych. Na podstawie studium literaturowego wskazano grupy minerałów, które mogą wpływać na zmiany pojemności magazynowej oraz na czystość gazu. Należą do nich w szczególności węglany, anhydryt, ankeryt i piryt, które stanowiąc skład matrycy skalnej lub cementu, mogą znacząco wpływać na potencjał magazynowy analizowanej struktury. Podczas kontaktu z wodorem minerały te ulegają rozpuszczeniu, w wyniku czego uwalniane są m.in. jony Fe2+, Mg2+, Ca2+, SO42−, HCO3, CO32−, HS. Jony te wchodzą nie tylko w skład minerałów wtórnych, ale również na skutek dalszych reakcji z wodorem zanieczyszczają magazynowany nośnik energii domieszkami CH4, H2S i CO2, co ogranicza możliwości dalszego wykorzystania wodoru. Zwrócono również uwagę na możliwość wystąpienia rozpuszczania kwarcu, którego szybkość zależy od stężenia jonów Na+ w solance złożowej oraz pH. Ponadto pH wpływa na reaktywność wodoru i zależy w dużej mierze od temperatury i ciśnienia, które w trakcie pracy magazynu będzie podlegało częstym cyklicznym zmianom. W artykule omówiono wpływ warunków termobarycznych na analizowany proces, co powinno stanowić podstawę do szczegółowej analizy oddziaływania skała–wodór– solanka dla potencjalnej podziemnej struktury magazynowej.
There are several hydrogen storage methods, including surface tanks, metal hydrides, carbon nanotubes, organometallic networks, liquid organic hydrogen carriers, or adsorbents. However, underground hydrogen storage (UHS) appears to be crucial in solving the problem of long-term storage of large amounts of energy, increasing the power grid's stability and improving energy systems' efficiency. The criteria for selecting a hydrogen storage structure include a number of technical, economic, ecological, and social factors. One of the least recognized research areas concerning UHS is the in situ loss of hydrogen caused by geochemical reactions that may affect sealing rocks' petrophysical parameters and strength. The article presents the reactions that may occur during hydrogen storage in geological structures. Based on a literature study, groups of minerals that may affect changes in storage capacity and gas purity have been indicated. These include, in particular, carbonates, anhydrite, ankerite, and pyrite in both the rock matrix and the cement. Upon contact with hydrogen, these minerals dissolve, releasing, among others, Fe2+, Mg2+, Ca2+, SO42– , HCO3, CO32– , HS ions. These ions are not only components of secondary minerals but also, as a result of further reactions with hydrogen, pollute the stored energy carrier with admixtures of CH4, H2S and CO2, which limits the possibilities of further hydrogen use. The possibility of quartz dissolution, the rate of which depends on the concentration of Na+ ions in the reservoir brine and the pH, was also noted. Moreover, pH influences the reactivity of hydrogen and depends mainly on temperature and pressure, which will be subject to frequent cyclical changes during the operation of the storage. This review paper discusses the influence of thermobaric conditions on the analyzed process, what should be a base for detailed analysis of the rock-hydrogen-brine interaction for the potential underground storage structure.
Źródło:
Nafta-Gaz; 2022, 78, 8; 580-588
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie modelowania przestrzennego do wyznaczania stref pod odwierty eksploatacyjne dla PMG działających w obrębie wyeksploatowanych złóż konwencjonalnych
Determination of perspective zones for wells through the application of spatial modeling within UGS operating in exploited conventional reservoirs
Autorzy:
Cierzniak, M.
Miziołek, M.
Powiązania:
https://bibliotekanauki.pl/articles/1835244.pdf
Data publikacji:
2018
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
modelowanie 3D
Karpaty
zapadlisko przedkarpackie
podziemne magazynowanie gazu
subsurface modeling
Carpathians
Carpathian Foredeep
underground gas storage
Opis:
Exploited conventional reservoirs located in the south-eastern part of Poland, characterized by favorable petrophysical parameters, are being used for underground gas storage under appropriate technological and economic conditions, as exemplified by UGS Husow, Strachocina, Swarzow or Brzeznica. The use of subsurface modeling software for visualizing spatial reservoir parameters’ distribution within old gas fields, is associated with a significant degree of uncertainty resulting from a wide variation in time of data acquisition and factors affecting its representativeness. The article presents the concept of using modeling adapted for old, conventional gas reservoirs, assuming the selection and processing of reinterpreted gamma ray logs to create pseudo-facies classification. Visualization of its elements, along with geological and reservoir interpretation, can be used for further analysis, including decision making in the aspect of picking out predisposed zones for new wells associated with increasing UGS total storage capacity. Modeling was conducted with the use of the Baker Hughes JewelSuite™ Subsurface Modeling software.Słowa kluczowe: modelowanie 3D, Karpaty, zapadlisko przedkarpackie, podziemne magazynowanie gazu.
Exploited conventional reservoirs located in the south-eastern part of Poland, characterized by favorable petrophysical parameters, are used for underground gas storage under appropriate technological and economic conditions, which can be exemplified by UGS Husow, UGS Strachocina, UGS Swarzow or UGS Brzeznica. The use of subsurface modeling software for visualizing spatial reservoir parameters’ distribution within old gas fields is burdened with significant uncertainty related to wide range of time diversity of data acquisition and factors affecting its representativeness. The article presents the concept of using modeling adapted for old, conventional gas reservoirs, assuming the selection and processing of reinterpreted gamma ray logs to create pseudo-facies classification. Visualization of its elements, along with geological and reservoir interpretation, can be used for further analysis, including decision making in the aspect of typing perspective zones for new wells associated with increasing UGS total storage capacity. Modeling was conducted with an use of Baker Hughes JewelSuite™ Subsurface Modeling software.
Źródło:
Nafta-Gaz; 2018, 74, 6; 465-470
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The history of UGS Strachocina investment as an example of success achieved by cooperation between a western company and Polish oil and gas companies
Historia inwestycji PMG Strachocina jako przykład sukcesu współpracy firmy zachodniej z polskimi przedsiębiorstwami z sektora ropy naftowej i gazu ziemnego
Autorzy:
Filar, Bogdan
Miziołek, Mariusz
Kawecki, Mieczysław
Piaskowy, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2143424.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
UGS Strachocina
horizontal well
natural gas
gas storage
UGS
expansion
PMG Strachocina
odwiert horyzontalny
gaz ziemny
magazynowanie gazu
rozbudowa
PMG
Opis:
In 2006 Oil and Gas Institute, Underground Gas Storage Department was given the task of designing the UGS Strachocina working volume, production and injection rates enlargement. Gas storage Strachocina is located in the south eastern part of Poland, near Sanok. The UGS Department ran some analysis before that date, which gave us the answer that the old vertical well technology would not be enough to achieve investment success. We knew that we needed to use horizontal well technology in which we had no experience at all. At that time there were only a few horizontal wells drilled in Poland. We decided to start cooperation with the company Baker Hughes, and asked them to help us to design the drilling technology and well completions. We knew that we needed to drill 8 horizontal wells in difficult reservoir conditions. Based on Baker Hughes’ recommendations, the EXALO Polish drilling company’s experience and the Institute’s knowledge of storage reservoir geology, the trajectories of 8 new wells were designed. Working with Baker Hughes, we designed the well completion based on expandable filters, the second time this type of completion technology had been used in the world at that time. During drilling, we were prepared for drilling fluid losses because of the extensive Strachocina reservoir’s natural fracture system. The investment was in doubt during the drilling of the first two horizontal wells because of huge drilling fluid losses and the inability of drilling the horizontal section length as designed. We lost 4000 cubic metres of drilling fluid in a one single well. During the drilling of the 2 nd well, we asked Baker Hughes to help us to improve the drilling technology. Our partners from Baker Hughes prepared the solution in 3 weeks, and so we were able to use this new technology on the 3rd well drilled. It turned out that we could drill a longer horizontal section with less drilling fluid loss. The paper will show the idea of the project, the team building process, the project problems solved by the team, decisions made during the UGS Strachocina investment and the results. It will show how combining “western” technology and experience with “eastern” knowledge created a success story for all partners.
W 2006 roku Instytutowi Nafty i Gazu, Zakładowi Podziemnego Magazynowania Gazu, powierzono zadanie zaprojektowania rozbudowy PMG Strachocina poprzez powiększenie pojemności czynnej i zwiększenie mocy zatłaczania oraz odbioru gazu. Magazyn gazu Strachocina zlokalizowany jest w południowo-wschodniej Polsce, niedaleko Sanoka. Zakład Podziemnego Magazynowania Gazu przeprowadził analizę eksploatacji PMG Strachocina do roku 2006. Wykonana analiza dała odpowiedź, że stara technologia odwiertów pionowych nie wystarczy do osiągnięcia sukcesu inwestycyjnego, polegającego na rozbudowie magazynu Strachocina. Zakład PMG wiedział, że musi skorzystać z technologii odwiertów poziomych, w której nie posiadał żadnego doświadczenia. W tym czasie wykonano w Polsce tylko kilka odwiertów poziomych. Postanowiliśmy nawiązać współpracę z firmą Baker Hughes i poprosiliśmy ją o pomoc w zaprojektowaniu technologii wiercenia i wykonania odwiertów. Zespół Zakładu PMG obliczył, że musi zostać odwierconych 8 otworów horyzontalnych, w trudnych warunkach geologicznych. Na podstawie zaleceń Baker Hughes, doświadczeń polskiej firmy wiertniczej Exalo oraz wiedzy Instytutu z zakresu geologii PMG Strachocina zaprojektowano trajektorię 8 nowych odwiertów. Współpracując z Baker Hughes, wspólnie zaprojektowaliśmy udostępnienie horyzontów magazynowych z wykorzystaniem technologii filtrów poszerzalnych. W tamtym czasie technologia ta została zastosowana na świecie po raz drugi. Podczas wiercenia byliśmy przygotowani na ucieczki płynów wiertniczych ze względu na rozległy system naturalnych spękań występujących w horyzontach magazynu Strachocina. Osiągnięcie parametrów inwestycyjnych było zagrożone podczas wiercenia dwóch pierwszych odwiertów poziomych ze względu na duże straty płuczki wiertniczej oraz niemożność odwiercenia projektowanej długości odcinka poziomego. W jednym odwiercie straciliśmy 4000 metrów sześciennych płuczki wiertniczej. Podczas wiercenia drugiego odwiertu poprosiliśmy firmę Baker Hughes o pomoc w udoskonaleniu technologii wiercenia. Nasi partnerzy z Baker Hughes przygotowali rozwiązanie w 3 tygodnie. W związku z tym udoskonalona technologia została zastosowana podczas wiercenia trzeciego odwiertu. Okazało się, że możemy wywiercić dłuższy odcinek poziomy z mniejszymi stratami płynu wiertniczego. W artykule przedstawiona została idea projektu, proces budowania zespołu, problemy projektowe rozwiązane przez zespół, decyzje podjęte w trakcie realizacji rozbudowy PMG Strachocina oraz ich rezultaty. Głównym celem publikacji jest pokazanie, jak połączenie „zachodniej” technologii i doświadczenia ze „wschodnią” wiedzą tworzy historię sukcesu wszystkich partnerów.
Źródło:
Nafta-Gaz; 2021, 77, 11; 760-764
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena wielkości emisji węglowodorów do atmosfery podczas przeładunku i magazynowania oleju napędowego w zbiornikach z dachem stałym
Assessment of the amount of hydrocarbon emissions to the atmosphere during handling and storage of diesel fuel in fixed roof tanks
Autorzy:
Domin, Jakub
Piechota, Marek
Czechowicz, Dymitr
Skutil, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/1834236.pdf
Data publikacji:
2020
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
olej napędowy
magazynowanie
emisja węglowodorów
prężność par
współczynniki Antoine’a
wytyczne projektowe
Diesel fuel
storage
hydrocarbon emissions
vapor partial pressure
Antoine coefficients
design guidelines
Opis:
Diesel fuels currently constitute around 60–70% of the turnover of fuel bases in Poland. Diesel fuels are stored in vertical steel tanks with fixed roofs, which, according to applicable legal acts, do not require airtight sealing. This results in the emission of gases containing hydrocarbons to the atmosphere, which at high turnover of fuel bases generates the need to determine the concentration of hydrocarbons emitted to the atmosphere and to perform calculations of concentrations occurring at the boundary of the fuel base site. The article collects available literature data and presents the results of research on the emissions of hydrocarbons to the atmosphere that occur during handling and storage of diesel fuel in storage tanks, including the determination of the saturated vapor pressure of the hydrocarbon components of the tested diesel fuel depending on the temperature. The emissions tests were carried out by taking gas samples emitted during operations on diesel storage tanks. Analyzes of the gas samples supplied in gas-tight syringes were performed with SRI 8610C gas chromatograph equipped with a flame ionization detector (FID) and an alumina packed column. Diesel oil sample analysis was performed by gas chromatography using Shimadzu GC-2010 Plus chromatograph equipped with flame ionization detector (FID). ZB-5HT column (30 m × 0.25 mm × 0.25 µm) was used for the separation of the substances. Research has shown the amount of hydrocarbon emissions to the atmosphere depending on the type of loading operations, the degree of storage tank filling and oil temperature. The dependence of the concentration of hydrocarbons emitted from the storage tank depending on the degree of filling of the tank has been determined in the research. Results of calculations of diesel vapor pressure show convergence with most available literature data and measurement results. General design guidelines have been defined to determine the data necessary to calculate the level of hydrocarbon concentrations in atmospheric air. The research was aimed at creating the basis for the required environmental calculations, relevant in the absence of relevant literature data, necessary for the reliable determination of the amount of hydrocarbon emissions.
Źródło:
Nafta-Gaz; 2020, 76, 3; 192-204
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numeryczne symulacje procesu magazynowania wodoru w częściowo wyeksploatowanym złożu gazowym
Numerical simulations of hydrogen storage in a partially depleted gas reservoir
Autorzy:
Szott, Wiesław
Miłek, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2143375.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
struktury geologiczne
złoża naftowe
podziemne magazynowanie wodoru
procesy transportu w ośrodku porowatym
dyspersja fizyczna
kompozycyjne modele złożowe
geological structures
petroleum reservoirs
underground hydrogen storage
transport processes in porous media
physical dispersion
reservoir compositional models
Opis:
W pracy przedstawiono charakterystyki potencjalnych struktur możliwych do wykorzystania w celu magazynowania wodoru. Sformułowano kryteria wyboru optymalnej struktury, takie jak: pojemność dostępna dla wodoru, zakres historycznych ciśnień złożowych, ciśnienie szczelinowania, własności transportowe skały, aktywność wody podścielającej, rodzaj płynu złożowego, temperatura złożowa. Stosując te kryteria, wybrano strukturę złoża gazu ziemnego funkcjonującą obecnie jako PMG (podziemny magazyn gazu). Dla znalezienia charakterystyk wybranej struktury jako PMW (podziemnego magazynu wodoru) skonstruowano kompozycyjny model złożowy poprzez konwersję istniejącego modelu typu black oil. W tym celu model złoża uzupełniono o wieloskładnikowy model płynu złożowego opisany równaniem stanu Soave’a–Redlicha–Kwonga oraz o kompozycyjne hydrauliczne modele odwiertów. Kompletny model złoża efektywnie skalibrowano, wykorzystując wieloletnie historyczne dane eksploatacyjne obejmujące wydajności wydobycia ze złoża, zatłaczania i odbioru gazu w ramach PMG oraz ciśnienie zmierzone na spodzie odwiertów eksploatacyjnych. Zweryfikowany model wykorzystano do wielokrotnych symulacji procesu magazynowania wodoru, stosując realistyczne ograniczenia dla zatłaczania i odbioru gazu, tj. czas zatłaczania i odbioru, limity na sumaryczną ilość zatłaczanego wodoru oraz odbieranego gazu, minimalną czystość odbieranego wodoru. Rozpatrzono warianty różniące się szczegółami konwersji PMG na PMW oraz zakładanym maksymalnym stopniem zanieczyszczenia odbieranego wodoru. Podstawowe własności geologiczne wynikały z oryginalnych właściwości struktury i nie podlegały modyfikacjom, natomiast nieznany, ale istotny parametr dyspersji, decydujący o mieszaniu się gazu zatłaczanego z gazem rodzimym, był przedmiotem analizy warianto- wej. Wyniki ilościowe prognoz pracy PMW uzupełniono szczegółową analizą rozkładów nasycenia wodorem na różnych etapach i w różnych cyklach pracy magazynu. W pracy badano wpływ zjawiska dyspersji na wyniki pracy magazynu poprzez implementację zjawiska dyspersji numerycznej, weryfikację poprawności korelacji dyspersji z prędkością migracji oraz identyfikację wielkości dyspersji dla różnych wariantów modelu złoża.
The paper presents the characteristics of potential structures that can be used for hydrogen storage. The criteria for selecting the optimal structure were formulated. They include estimated sequestration capacity, range of historical reservoir pressures, fracturing pressure, transport properties of the rock, activity of the underlying water, type of reservoir fluid, reservoir temperature. After applying these criteria, a natural gas field structure, currently functioning as a UGS (underground gas storage) facility, was selected. In order to find the characteristics of the selected structure as a UHS (underground hydrogen storage), a compositional reservoir model was constructed. For this purpose, a multicomponent model of the formation fluid described by the Soave–Redlich–Kwong equation of state was built and supplemented with compositional hydraulic models of wells. The complete model of the field was effectively calibrated using historical operational data, including the production rate from the gas field, gas injection and withdrawal under the UGS operation and the pressures measured at the bottom of the production wells. The verified model was used for multiple simulations of the hydrogen storage process using realistic constraints for gas injection and withdrawal, i.e., injection and withdrawal times, limits for the total amount of injected hydrogen and withdrawn gas, maximum acceptable contamination of the withdrawn hydrogen. Consequently, simulation scenarios differed in the details of the UGS – UHS conversion and withdrawn gas composition. The basic geological properties resulted from the original structure properties were not subject to modification, while the unknown but significant dispersion parameter determining the mixing of the injected gas with the original gas was subject to changes. The quantitative results of the UHS operation forecasts were supplemented with a detailed analysis of the distribution of hydrogen saturation at various stages and in different operation cycles of the storage schedule. The study investigated the influence of the dispersion phenomenon on the results of storage operation by implementing the phenomenon of numerical dispersion, verifying the correctness of the correlation between dispersion and migration speed, and identifying the dispersion values for various reservoir models. Basic conclusion was derived from the obtained simulation results.
Źródło:
Nafta-Gaz; 2022, 78, 1; 41-55
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody efektywnego i bezpiecznego magazynowania wodoru jako warunek powszechnego jego wykorzystania w transporcie i energetyce
Methods of effective and safe hydrogen storage as a condition of its widespread use in transportation and energetics
Autorzy:
Siekierski, Maciej
Majewska, Karolina
Mroczkowska-Szerszeń, Maja
Powiązania:
https://bibliotekanauki.pl/articles/31343959.pdf
Data publikacji:
2023
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
przechowywanie wodoru
sprężanie wodoru
skraplanie wodoru
wytwarzanie wodoru
związek wodoru
metoda przechowywania
transport
magazynowanie wielkoskalowe wodoru
podziemny magazyn wodoru
hydrogen storage
hydrogen compression
hydrogen liquefaction
hydrogen production
hydrogen compounds
method of hydrogen storage
large-scale hydrogen storage
underground hydrogen storage
Opis:
Uwarunkowania ekologiczne, ale także polityczne, a w ostatnim czasie również ekonomiczne związane z galopującym wzrostem cen surowców energetycznych, jak i samej energii, stały się powodem silnie rosnącego zainteresowania zarówno wydajnymi źródłami energii, jak też „czystymi” paliwami, w tym wodorem. Wprowadzenie wodoru do powszechnego użytku w transporcie i energetyce wiąże się jednak z szeregiem problemów natury technicznej, często rozwiązanych w skali laboratoryjnej, jednak ciągle oczekujących na wdrożenia. Katalog zagadnień związanych z wykorzystaniem wodoru jako paliwa do powszechnego użytku jest bardzo długi, jednak w niniejszej pracy skupiamy się na przybliżeniu problematyki dotyczącej przechowywania wodoru. Jako istotne omówione są kwestie metod sprężania, skraplania i lokalnego wytwarzania wodoru, a także przechowywania go i transportu w postaci związków chemicznych o różnej budowie. Pośród omówionych związków znalazły się między innymi wodorki metali o wysokiej aktywności chemicznej, borowodorek sodowy, amidoborany. Jako osobna grupa organicznych nośników wodoru mogą być rozpatrywane związki takie jak kwas mrówkowy, toluen, naftalen, a także inne mogące ulegać odwracalnemu uwodornieniu, jak pary aren–cykloalkan. Naświetlone zostały także problemy technologiczne związane z wykorzystaniem wspomnianych związków w przechowywaniu i transporcie wodoru. Istotną kwestię stanowią także metody wielkoskalowego magazynowania tego gazu, dlatego też w artykule zasygnalizowane zostały zagadnienia dotyczące problematyki podziemnych magazynów gazu (PMG) wykorzystywanych do magazynowania wodoru czy wreszcie – magazynowania go w istniejącej infrastrukturze przesyłowej. Ponadto przybliżony został zarys najistotniejszych uwarunkowań prawnych oraz strategii dotyczących wodoru, zarówno w skali kraju, jak i wspólnoty europejskiej.
Environmental, political, and currently also economic factors related to the galloping increase in prices of raw materials and energy have become the reason for the growing interest in both efficient energy sources and so-called “clean” fuels, including hydrogen. However, the introduction of hydrogen for widespread use in transport and energy sectors is associated with several technical difficulties and challenges, often solved at the laboratory scale but still awaiting industrial implementation. The catalogue of issues related to the introduction of hydrogen as a fuel of general use is quite extensive. However, this paper focuses on explaining the problems associated with hydrogen storage. These include methods of hydrogen compression, liquefaction and in situ production as well as its storage and transportation in the form of various chemical compounds. The compounds discussed include metal hydrides of high chemical activity, sodium borohydride, and amidoboranes. As a separate group of organic hydrogen carriers compounds such as formic acid, toluene, and naphthalene as well as other capable of reversible hydrogenation such as arene-cycloalkane pairs, can also be considered. The paper also discusses technological issues related to the use of these compounds. The issue of customization and development of underground gas storage (UGS) towards hydrogen storage and storing it in the existing transmission infrastructure and the methods critical for a large-scale storage of this gas are also covered. Furthermore, an overview of the most critical legal regulations and strategies for hydrogen on the national and European Community level is provided.
Źródło:
Nafta-Gaz; 2023, 79, 2; 114-130
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies