Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "osiadanie terenu" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Degradacja powierzchni terenu wynikająca ze stosowania metod bezwykopowych i zabezpieczenia przed tym zjawiskiem
Degradation of surface caused by trenchless methods application and the protection measures
Autorzy:
Kędracki, M.
Powiązania:
https://bibliotekanauki.pl/articles/300023.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
technologie bezwykopowe
tunelowanie
osiadanie terenu
trenchless technology
tunneling
subsidence
Opis:
Artykuł wymienia znane sposoby zabezpieczania powierzchni terenu przed degradacją wynikającą ze stosowania metod bezwykopowych oraz przykładowe zabezpieczenia obiektów budowlanych przed skutkami tunelowania. Rozpatrzenie prawdopodobnych układów naprężeń wokół wyrobisk tunelowych prowadzi do określania bezpiecznej szerokości sztucznego stropu zabezpieczającego powierzchnię terenu przed skutkami tunelowania przeciskowego.
The authors of the paper present known ways of protecting surface against degradation caused by the use of trenchless methods as well as exemplary protection of building objects against the consequences of tunneling. The analysis of feasible systems of stresses around the tunnels leads to determining a safe width of artificial roof protecting the surface against the tunnelling consequences.
Źródło:
Wiertnictwo, Nafta, Gaz; 2007, 24, 1; 269-281
1507-0042
Pojawia się w:
Wiertnictwo, Nafta, Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie osiadań powierzchni terenu przy użyciu sieci neuronowych
Application of neural networks to the prediction of the surface subsidence
Autorzy:
Pawluś, D.
Powiązania:
https://bibliotekanauki.pl/articles/349657.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
osiadanie powierzchni terenu
sieci neuronowe
neural network
surface subsidence
Opis:
Artykuł prezentuje wyniki pracy nad utworzeniem sieci neuronowej prognozującej osiadania powierzchni terenu na podstawie danych dotyczących planowanej eksploatacji, takich jak: głębokość i grubość pokładu, położenie, wielkość oraz kształt pola eksploatacyjnego, kąt zasięgu wpływów głównych oraz współczynnik eksploatacji. Do tworzenia sieci wykorzystano pakiet Statistica, natomiast dane do uczenia sieci uzyskano z modelu teoretycznego Budryka-Knothego. Prognozy uzyskane przez sieć, dla której otrzymano najlepsze dopasowanie wyników, przedstawiono na rysunkach 4 i 5. Aktualnie prowadzone są prace nad znalezieniem sieci lub zespołu sieci, które wyznaczałyby osiadania powierzchni dla obszaru zawierającego więcej niż jedno pole eksploatacyjne.
This paper presents an application of neural networks for the prediction of a surface subsidence. The main advantage of the artificial neural network approach is that there is no need to assume the type of functional relation and there is no need to have an accurate knowledge of material properties in the area of interest. Only the geometry of the neural network has to be chosen and the learning procedure has to be successfully completed. The networks were used as a solution to following problem. There was given excavated quadrangular area which was described by the following factors: the coordinates of vertices of a worked area, the seam thickness, the depth of the opening, an angle of the mining influence and the subsidence factor. We want to predict the final subsidence of any point of surface. The multi-layer feed-forward networks were used for modeling the surface subsidence trough. The supervised learning has been used. Figures 4 and 5 present the final subsidences of the points lying on two lines. The neural networks could be used for computing the surface subsidence. The author will intend to use networks for computing the other factors of the surface deformations.
Źródło:
Górnictwo i Geoinżynieria; 2007, 31, 3; 329-335
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Próba zastosowania sieci neuronowych do prognozowania osiadań powierzchni terenu powstałych na skutek eksploatacji górniczej
Application of neural networks to the predication of the surface subsidence
Autorzy:
Pawluś, D.
Powiązania:
https://bibliotekanauki.pl/articles/350416.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
osiadanie powierzchni terenu
sieci neuronowe
surface subsidence
neural network
Opis:
W artykule przedstawiono zastosowanie sieci neuronowych do przewidywania osiadań powierzchni terenu powstałych w wyniku eksploatacji górniczej. Sieci neuronowe są często wykorzystywane do tego by na podstawie pewnych danych wejściowych przewidywać określone dane wyjściowe. Zaletą sieci neuronowej jako narzędzia prognozującego jest to, że sieć w wyniku procesu uczenia może nabyć zdolności przewidywania wyjściowych sygnałów wyłącznie na podstawie obserwacji tzw. ciągu uczącego, bez konieczności formułowania hipotez co do rodzaju zależności między nimi. Celem badań było utworzenie takich sieci, które na podstawie danych dotyczących planowanej eksploatacji, głębokość i grubość pokładu, położenie, wielkość oraz kształt pola eksploatacyjnego mogły wyznaczyć obniżenia terenu. Dane do uczenia sieci uzyskano z modeli teoretycznych. Wartości osiadań obliczono na podstawie teorii Budryka-Knothego. W artykule zaprezentowano testowane modele sieci oraz wyniki uzyskane z sieci najlepiej rozwiązującej problem. Na ich podstawie można stwierdzić, że możliwe jest utworzenie sieci neuronowej prognozującej osiadania powierzchni, pod warunkiem jednak, że będziemy dysponować dużą ilością danych do uczenia sieci (rzędu kilku, a nawet kilkudziesięciu tysięcy). Dlatego też dużym problemem jest utworzenie sieci neuronowej uczonej na podstawie przypadków rzeczywistych. Stąd planowane jest kontynuowanie badań w tym zakresie.
This paper presents an application of neural networks for the prediction of a surface subsidence. The main advantage of the artificial neural network approach is that there is no need to assume the type of functional relation and there is no need to have an accurate knowledge of material properties in the area of interest. Only the geometry of the neural network has to be chosen and the learning procedure has to be successfully completed. There are several types of neural network geometry. The multi-layer feed-forward networks were used for modeling the surface subsidence trough. Neural networks need to learn in order to produce useful results. There are two different kinds of learning: unsupervised learning and supervised learning. The supervised learning has been used. The networks were used as a solution to following problem. There was given excavated quadrangular area which was described by the following factors: the cordinates of vertices of a worked area, the seam thickness, the depth of the opening. We want to predicate the final subsidence of any point P(x,y). The neural networks could be used for computing the surface subsidence. The author will intend to use networks for computing the other factors of the surface deformations.
Źródło:
Górnictwo i Geoinżynieria; 2006, 30, 4; 79-87
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of terrain subsidence in relation to the engineering-geological zones in a territory of the Ostrava-Karvina District affected by mining
Ocena osiadań powierzchni terenu rejonu ostrawsko-karwińskiego naruszonego działalnością górniczą w odniesieniu do stref geologiczno-inżynierskich
Autorzy:
Marschalko, M.
Penaz, T.
Duraj, M.
Powiązania:
https://bibliotekanauki.pl/articles/348955.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
geologia inżynierska
osiadanie terenu
planowanie przestrzenne
GIS
strefy geologiczno-inżynierskie
engineering geology
terrain subsidence
space planning
engineering-geological zones
Opis:
The study deals with the evaluation of terrain subsidence (isocatabases) as one of the most important manifestations of mining exploitation. Development of human activities in various spheres of interest occurs also in such affected landscapes. In terms of the engineering geology there is a need for subsidence development assessment in time in relation to the engineering-geological zones representing the geological environment with similar characteristics. It's very essential for the foundation engineering. Overlay analyses in the Geographic Information Systems of the stated factors bring the necessary information for land-use decision-making and planning. The case study in the selected part of the Karvina section of the Ostrava-Karvina District (map sheet 15-44-02) was implemented in the cadastral district of the town of Orlova in the north-east of the Czech Republic.
W artykule przyjęto temat oceny osiadań terenu, jednego z najistotniejszych objawów eksploatacji górniczej. Rozwój działalności człowieka przejawia się ogólnym naruszeniem krajobrazu. Dla wymagań geologii inżynierskiej zachodzi potrzeba oceny rozwoju niecki osiadań w czasie dla odpowiednich stref geologiczno-inżynierskich opisujący środowisko geologiczne o podobnych cechach. Jest to niezbędne dla tematyki fundamentowania. Przetworzenie danych z analiz inżynierskich przez Geograficzny System Informatyczny (GIS) daje niezbędne informacje dla decyzji dotyczących zagospodarowania przestrzennego. Jako analizę przypadku wybrano miasto Orloga, znajdujące się w rejonie Karwiny-Zagłębia Ostrawsko-Karwińskiego (karta mapy nr 15-44-02).
Źródło:
Górnictwo i Geoinżynieria; 2010, 34, 2; 471-480
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies