Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Infinite" wg kryterium: Temat


Tytuł:
The lq-controller synthesis problem for infinite-dimensional systems in factor form
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/254801.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
control of infinite-dimensional systems
semigroups
infinite-time lq-control problem
Opis:
The general lq-problem with infinite time horizon for well-posed infinite-dimensional systems has been investigated by George Weiss and Martin Weiss and by Olof Staffans with a complement by Kalle Mikkola and Olof Staffans. Our aim in this paper is to present a solution of a general lq-optimal controller synthesis problem for infinite-dimensional systems in factor form. The systems in factor form are an alternative to additive models, used in the theory of well-posed systems, which rely on leading the analysis exclusively within the basic state space. As a result of applying the simplified analysis in terms of the factor systems and an another derivation technique, we obtain an equivalent, however, astonishingly not the same formulae expressing the optimal controller in the time-domain and the method of spectral factorization. The results are illustrated by two examples of the construction of both the optimal control and optimal controller for some standard lq-problems met in literature: a control problem for a class of boundary controlled hyperbolic equations initiated by Chapelon and Xu, to which we give full solution and an example of the synthesis of the optimal control/controller for the standard lq-problem with infinite-time horizon met in the problem of improving a river water quality by artificial aeration, proposed by Zołopa and the author.
Źródło:
Opuscula Mathematica; 2013, 33, 1; 29-79
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Small-gain theorem for a class of abstract parabolic systems
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/255288.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
control of infinite-dimensional systems semigroups
infinite-time LQ-control problem
Lur'e feedback systems
Opis:
We consider a class of abstract control system of parabolic type with observation which the state, input and output spaces are Hilbert spaces. The state space operator is assumed to generate a linear exponentially stable analytic semigroup. An observation and control action are allowed to be described by unbounded operators. It is assumed that the observation operator is admissible but the control operator may be not. Such a system is controlled in a feedback loop by a controller with static characteristic being a globally Lipschitz map from the space of outputs into the space of controls. Our main interest is to obtain a perturbation theorem of the small-gain-type which guarantees that null equilibrium of the closed-loop system will be globally asymptotically stable in Lyapunov's sense.
Źródło:
Opuscula Mathematica; 2018, 38, 5; 651-680
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The LQ/KYP problem for infinite-dimensional systems
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/255449.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
control of infinite-dimensional systems
semigroups
infinite-time LQ-control problem
Lur’e feedback systems
Opis:
Our aim is to present a solution to a general linear-quadratic (LQ) problem as well as to a Kalman-Yacubovich-Popov (KYP) problem for infinite-dimensional systems with bounded operators. The results are then applied, via the reciprocal system approach, to the question of solvability of some Lur'e resolving equations arising in the stability theory of infinite-dimensional systems in factor form with unbounded control and observation operators. To be more precise the Lur’e resolving equations determine a Lyapunov functional candidate for some closed-loop feedback systems on the base of some properties of an uncontrolled (open-loop) system. Our results are illustrated in details by an example of a temperature of a rod stabilization automatic control system.
Źródło:
Opuscula Mathematica; 2017, 37, 1; 21-64
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Global convergence of successive approximations of the Darboux problem for partial functional differential equations with infinite delay
Autorzy:
Człapiński, T.
Powiązania:
https://bibliotekanauki.pl/articles/255121.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
successive approximations
Darboux problem
infinite delay
Opis:
We consider the Darboux problem for the hyperbolic partial functional differential equation with infinite delay. We deal with generalized (in the "almost everywhere" sense) solutions of this problem. We prove a theorem on the global convergence of successive approximations to a unique solution of the Darboux problem.
Źródło:
Opuscula Mathematica; 2014, 34, 2; 327-338
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence results for Kirchhoff type systems with singular nonlinearity
Autorzy:
Firouzjai, A.
Afrouzi, G. A.
Talebi, S.
Powiązania:
https://bibliotekanauki.pl/articles/254877.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sub-supersolution
infinite semipositone systems
singular weights
Kirchhoff-type
Opis:
Using the method of sub-super solutions, we study the existence of positive solutions for a class of singular nonlinear semipositone systems involving nonlocal operator.
Źródło:
Opuscula Mathematica; 2018, 38, 2; 187-199
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Well-posedness and stability analysis of hybrid feedback systems using Shkalikovs theory
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/254925.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite-dimensional control systems
semigroups
spectral methods
Riesz bases
Opis:
The modern method of analysis of the distributed parameter systems relies on the transformation of the dynamical model to an abstract differential equation on an appropriately chosen Banach or, if possible, Hilbert space. A linear dynamical model in the form of a first order abstract differential equation is considered to be well-posed if its right-hand side generates a strongly continuous semigroup. Similarly, a dynamical model in the form of a second order abstract differential equation is well-posed if its right-hand side generates a strongly continuous cosine family of operators. Unfortunately, the presence of a feedback leads to serious complications or even excludes a direct verification of assumptions of the Hille-Phillips-Yosida and/or the Sova-Fattorini Theorems. The class of operators which are similar to a normal discrete operator on a Hilbert space describes a wide variety of linear operators. In the papers [12, 13] two groups of similarity criteria for a given hybrid closed-loop system operator are given. The criteria of the first group are based on some perturbation results, and of the second, on the application of Shkalikov's theory of the Sturm-Liouville eigenproblems with a spectral parameter in the boundary conditions. In the present paper we continue those investigations showing certain advanced applications of the Shkalikov's theory. The results are illustrated by feedback control systems examples governed by wave and beam equations with increasing degree of complexity of the boundary conditions.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 45-97
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Transmission problems for the Helmholtz equation for a rectilinear-circular lune
Autorzy:
Denysenko, V.
Powiązania:
https://bibliotekanauki.pl/articles/255476.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Helmholtz equation
transmission problem
infinite system of linear algebraic equations
Opis:
The question related to the construction of the solution of plane transmission problem for the Helmholtz equation in a rectilinear-circular lune is considered. An approach is proposed based on the method of partial domains and the principle of reflection for the solutions of the Helmholtz equation through the segment.
Źródło:
Opuscula Mathematica; 2007, 27, 2; 197-203
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monotone iteration for infinite systems of parabolic equations
Autorzy:
Pudełko, A.
Powiązania:
https://bibliotekanauki.pl/articles/255193.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite systems
parabolic equations
Cauchy problem
monotone iteration method
differentail inequality
Opis:
In the paper the Cauchy problem for and infinite system of parabolic type equations is studied. The general operators of the parabolic type of second order with variable coefficients are considered and the system is weakly coupled. Among the obtained results there is a theorem on differential inequality as well as the existence and uniqueness theorem in the class of continuous-bounded functions obtained by monotone iterative method.
Źródło:
Opuscula Mathematica; 2005, 25, 2; 307-318
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence of solutions of the Dirichlet problem for an infinite system of nonlinear differential-functional equations of elliptic type
Autorzy:
Zabawa, T.S.
Powiązania:
https://bibliotekanauki.pl/articles/255205.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite systems
elliptic differential-functional equations
monotone iterative technique
Chaplygin's method
Dirichlet problem
Opis:
The Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations of elliptic type is considered. It is shown the existence of solutions to this problem. The result is based on Chaplygin's method of lower and uper functions.
Źródło:
Opuscula Mathematica; 2005, 25, 2; 333-343
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non symmetric random walk on infinite graph
Autorzy:
Zygmunt, M. J.
Powiązania:
https://bibliotekanauki.pl/articles/254997.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
random walk on an infinite graph
block tridiagonal transition matrix
spectral measure matrix orthogonal polynomials
Opis:
We investigate properties of a non symmetric Markov's chain on an infinite graph. We show the connection with matrix valued random walk polynomials which satisfy the orthogonality formula with respect to non a symmetric matrix valued measure.
Źródło:
Opuscula Mathematica; 2011, 31, 4; 669-674
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference methods for infinite systems of hyperbolic functional differential equations on the Haar pyramid
Autorzy:
Jaruszewska-Walczak, D.
Powiązania:
https://bibliotekanauki.pl/articles/2050179.pdf
Data publikacji:
2004
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
initial problems
infinite systems of differential functional equations
difference functional inequalities
nonlinear estimates of Perron type
Opis:
We consider the Cauchy problem for infinite system of differential functional equations $\partial_{t}z_{k}(t, x) = f_{k}(t, x, z, \partial_{x}z_{k}(t, x)), k \in \mathbf{N}$. In the paper we consider a general class of difference methods for this problem. We prove the convergence of methods under the assumptions that given functions satisfy the nonlinear estimates of the Perron type with respect to functional variables. The proof is based on functional difference inequalities. We constructed the Euler method as an example of difference method.
Źródło:
Opuscula Mathematica; 2004, 24, 1; 85-96
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stability of solutions of infinite systems of nonlinear differential-functional equations of parabolic type
Autorzy:
Zabawa, T.S.
Powiązania:
https://bibliotekanauki.pl/articles/254967.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
stability of solutions
infinite systems
parabolic equations
elliptic equations
semilinear differential-functional equations
monotone iteration method
Opis:
A parabolic initial boundary value problem and an associated elliptic Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations are considered. It is shown that the solutions of the parabolic problem is asymptotically stable and the limit of the solution of the parabolic problem as t → ∞ is the solution of the associated elliptic problem. The result is based on the monotone methods.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 173-183
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The motion planning problem and exponential stabilization of a heavy chain. Part II
Autorzy:
Grabowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/255394.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite-dimensional control systems
semigroups
motion planning problem
exponential stabilization
spectral methods
Riesz bases
exact observability
Opis:
This is the second part of paper [8], where a model of a heavy chain system with a punctual load (tip mass) in the form of a system of partial differential equations was interpreted as an abstract semigroup system and then analysed on a Hilbert state space. In particular, in [8] we have formulated the problem of exponential stabilizability of a heavy chain in a given position. It was also shown that the exponential stability can be achieved by applying a stabilizer of the colocated-type. The proof used the method of Lyapunov functionals. In the present paper, we give other two proofs of the exponential stability, which provides an additional intrinsic insight into the exponential stabilizability mechanism. The first proof makes use of some spectral properties of the system. In the second proof, we employ some relationships between exponential stability and exact observability.
Źródło:
Opuscula Mathematica; 2008, 28, 4; 481-505
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference problems generated by infinite systems of nonlinear parabolic functional differential equations with the Robin conditions
Autorzy:
Czernous, W.
Jaruszewska-Walczak, D.
Powiązania:
https://bibliotekanauki.pl/articles/255694.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
nonlinear parabolic equations
functional differential equations
infinite systems
Volterra type operators
nonlinear estimates of Perron type
truncation methods
Opis:
We consider the classical solutions of mixed problems for infinite, countable systems of parabolic functional differential equations. Difference methods of two types are constructed and convergence theorems are proved. In the first type, we approximate the exact solutions by solutions of infinite difference systems. Methods of second type are truncation of the infinite difference system, so that the resulting difference problem is finite and practically solvable. The proof of stability is based on a comparison technique with nonlinear estimates of the Perron type for the given functions. The comparison system is infinite. Parabolic problems with deviated variables and integro-differential problems can be obtained from the general model by specifying the given operators.
Źródło:
Opuscula Mathematica; 2014, 34, 2; 311-326
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monotone iterative methods for infinite systems of reaction-diffusion-convection equations with functional dependence
Autorzy:
Brzychczy, S.
Powiązania:
https://bibliotekanauki.pl/articles/255097.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite systems
reaction-diffusion-convection equations
semilinear parabolic differential-functional equations
Volterra functionals
monotone iterative methods
method of upper and lower solutions
Opis:
We consider the Fourier first initial-boundary value problem for an infinite system of semilinear parabolic differential-functional equations of reaction-diffusion-convection type of the form [formula] where [formula] in a bounded cylindrical domain (0, T] x G := D rcup Rm+1. The right-hand sides of the system are Volterra type functionals of the unknown function z. In the paper, we give methods of the construction of the monotone iterative sequences converging to the unique classical solution of the problem considered in partially ordered Banach spaces with various convergence rates of iterations. We also give remarks on monotone iterative methods in connection with numerical methods, remarks on methods for the construction of lower and upper solutions and remarks concerning the possibility of extending these methods to more general parabolic equations. All monotone iterative methods are based on differential inequalities and, in this paper, we use the theorem on weak partial differential-functional inequalities for infinite systems of parabolic equations, the comparison theorem and the maximum principle. A part of the paper is based on the results of our previous papers. These results generalize the results obtained by several authors in numerous papers for finite systems of semilinear parabolic differential equations to encompass the case of infinite systems of semilinear parabolic differential-functional equations. The monotone iterative schemes can be used for the computation of numerical solutions.
Źródło:
Opuscula Mathematica; 2005, 25, 1; 29-99
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies