Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fourier method" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On some inverse problem for bi-parabolic equation with observed data in L$\text{}^{p}$ spaces
Autorzy:
Tuan, Nguyen Huy
Powiązania:
https://bibliotekanauki.pl/articles/2048891.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
biparabolic equation
Fourier truncation method
inverse source parabolic
inverse initial problem
regularization
Sobolev embeddings
Opis:
The bi-parabolic equation has many practical significance in the field of heat transfer. The objective of the paper is to provide a regularized problem for bi-parabolic equation when the observed data are obtained in $L^{p}$. We are interested in looking at three types of inverse problems. Regularization results in the L$\text{}^{2}$ space appears in many related papers, but the survey results are rare in $L^{p}$, p≠2. The first problem related to the inverse source problem when the source function has split form. For this problem, we introduce the error between the Fourier regularized solution and the exact solution in $L^{p}$ spaces. For the inverse initial problem for both linear and nonlinear cases, we applied the Fourier series truncation method. Under the terminal input data observed in $L^{p}$, we obtain the approximated solution also in the space $L^{p}$. Under some reasonable smoothness assumptions of the exact solution, the error between the the regularized solution and the exact solution are derived in the space $L^{p}$. This paper seems to generalize to previous results for bi-parabolic equation on this direction.
Źródło:
Opuscula Mathematica; 2022, 42, 2; 305-335
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical approaches to the heat transfer problem in modern electronic structures
Autorzy:
Raszkowski, T.
Samson, A.
Powiązania:
https://bibliotekanauki.pl/articles/952934.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
nanoscale heat transfer
Fourier-Kirchhoff equation
dual-phase-lag equation
finite difference method
Runge-Kutta method
gear’s method
thermal analyses
Opis:
The main aim of this paper is to present a detailed description of the research related to the modeling of heat conduction in modern electronic structures, including special consideration for numerical aspects of analyzed algorithms. The motivation to undertake the research as well as some of the most-important results of the experiments and simulations are also included. Moreover, a numerical approximation of the problem as well as the methodology used and a sample solution of the mentioned problem are presented. In the main part, the discretization techniques, Ordinary Differential Equation algorithms, and simulation results for Runge-Kutta’s and Gear’s algorithms are analyzed and discussed. Additionally, a new effective approach to the modeling of heat transfer in electronic nanostructures is demonstrated.
Źródło:
Computer Science; 2017, 18 (1); 71-93
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies