Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Platonism" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
O platońskich ideach
On Plato’s Doctrine of Ideas
Autorzy:
Dembiński, Bogdan
Powiązania:
https://bibliotekanauki.pl/articles/691207.pdf
Data publikacji:
2016
Wydawca:
Copernicus Center Press
Tematy:
philosophy of mathematics
mathematical platonism
history of philosophy
Plato
platonism
Platonic idealism
Opis:
This paper is an attempt to clarify the ontological status of Platonic ideas. My considerations are based on the example of mathematical ideas and their relation to the subjects of mathematics and phenomena, since such modes of existence are distinguished in the philosophy of Plato.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2016, 60; 83-98
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The theory of ideas and Plato’s philosophy of mathematics
Autorzy:
Dembiński, Bogdan
Powiązania:
https://bibliotekanauki.pl/articles/690838.pdf
Data publikacji:
2019
Wydawca:
Copernicus Center Press
Tematy:
mathematical Platonism
ontology
Platonic Academy
Opis:
In this article I analyze the issue of many levels of reality that are studied by natural sciences. Particularly interesting is the level of mathematics and the question of the relationship between mathematics and the structure of the real world. The mathematical nature of the world has been considered since ancient times and is the subject of ongoing research for philosophers of science to this day. One of the viewpoints in this field is mathematical Platonism. In contemporary philosophy it is widely accepted that according to Plato mathematics is the domain of ideal beings (ideas) that are eternal and unalterable and exist independently from the subject’s beliefs and decisions. Two issues seem to be important here. The first issue concerns the question: was Plato really a proponent of present-day mathematical Platonism? The second one is of greater importance: how mathematics influences our understanding of the nature of the world on its many ontological levels? In the article I consider three issues: the Platonic theory of “two worlds”, the method of building a mathematical structure, and the ontology of mathematics.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2019, 66; 95-108
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fizyzm Rolanda Omnésa - jedność świata matematyki i fizyki. Część I: kwantowe problemy abstrakcji
Physism of Roland Omnés - unity of the worlds of mathematics and physics; Part I - Quantum problems of abstraction
Autorzy:
Grygiel, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/690538.pdf
Data publikacji:
2008
Wydawca:
Copernicus Center Press
Tematy:
Roland Omnés
philosophy of mathematics
mathematical platonism
physism
Opis:
Inasmuch as mathematical platonism can be clearly matched with the radical realism, there exists a possibility to point out an approach, promoted by a French physicist, Roland Omnés, that is equivalent to the Aristotelian position of moderate realism. This standpoint denies the existence of an independent universum of mathematical entities and claims that mathematics is encoded in the laws of physics. In analogy to logicism, where mathematics is considered to be reducible to logic, Omnés' position is called by him 'physism' to stress the reducibility of mathematics to the laws of physics. The goal of Roland Omnés is to construct a common philosophy of mathematics and physics where the realities of these two disciplines converge. The first part of the analysis aims at the description and critical evaluation of physism from the point of view of the adequacy of the consistent histories interpretation of quantum mechanics to provide physical basis of the abstraction of the mathematical structures from the physical reality.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2008, 43; 89-102
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the adequacy of qualifying Roger Penrose as a complex Pythagorean
Autorzy:
Grygiel, Wojciech P.
Powiązania:
https://bibliotekanauki.pl/articles/691078.pdf
Data publikacji:
2018
Wydawca:
Copernicus Center Press
Tematy:
Roger Penrose
mathematical platonism
realism
pythagoreism
complex numbers
Opis:
The aim of the presented article is to provide an in-depth analysis of the adequacy of designating Penrose as a complex Pythagorean in view of his much more common designation as a Platonist. Firstly, the original doctrine of the Pythagoreans will be briefly surveyed with the special emphasis on the relation between the doctrine of this school and the teachings of the late Platonic School as well as its further modifications. These modifications serve as the prototype of the contemporary claims of the mathematicity of the Universe. Secondly, two lines of Penrose’s arguments in support of his unique position on the ontology of the mathematical structures will be presented: (1) their existence independent of the physical world in the atemporal Platonic realm of pure mathematics and (2) the mathematical structures as the patterns governing the workings of the physical Universe. In the third step, a separate line of arguments will be surveyed that Penrose advances in support of the thesis that the complex numbers seem to suit these patterns with exceptional adequacy. Finally, the appropriateness of designation Penrose as a complex Pythagorean will be assessed with the special emphasis on the suddle threshold between his unique position and that of the adherents of the mathematicity of the Universe.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2018, 65
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O niektórych aspektach platońskiej filozofii matematyki
On some aspects of mathematical platonism
Autorzy:
Dembiński, Bogdan
Powiązania:
https://bibliotekanauki.pl/articles/690766.pdf
Data publikacji:
2015
Wydawca:
Copernicus Center Press
Tematy:
philosophy of mathematics
mathematical platonism
history of philosophy
Plato
Opis:
Modern philosophers of mathematics in their discussions tend to refer to mathematical Platonism. Usually they believe that they talk about philosophical thought of Plato himself and understanding of mathematics that was introduced by the ancient philosopher. Unfortunately, contemporary mathematical Platonism has very little in common with original Platonism. In this paper I would like to clarify this issue and present Plato’s philosophy of mathematics.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2015, 58; 45-61
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A critical analysis of the philosophical motivations and development of the concept of the field of rationality as a representation of the fundamental ontology of the physical reality
Autorzy:
Grygiel, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/2140673.pdf
Data publikacji:
2022-11-08
Wydawca:
Copernicus Center Press
Tematy:
ontology
mathematics
platonism
category theory
Roger Penrose
Alfred North Whitehead
Opis:
The unusual applicability of mathematics to the description of the physical reality still remains a major investigative task for philosophers, physicists, mathematicians and cognitive scientists. The presented article offers a critical analysis of the philosophical motivations and development of a major attempt to resolve this task put forward by two prominent Polish philosophers: Józef Życiński and Michał Heller. In order to explain this particular property of mathematics Życiński has first introduced the concept of the field of rationality together with the field of potentiality to be followed by Heller’s formal field and the field of categories. It turns out that these concepts are fully intelligible once located within philosophical stances on the relations between mathematics and physical reality. It will be argued that in order to achieve more extended conceptual clarification of the precise meaning of the field of rationality, further advancements in the understanding of the nature of the human mind are required.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2022, 72; 87-108
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Creating new concepts in mathematics: freedom and limitations. The case of Category Theory
Autorzy:
Semadeni, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/1047591.pdf
Data publikacji:
2020-12-28
Wydawca:
Copernicus Center Press
Tematy:
categories
functors
Eilenberg-Mac Lane Program
mathematical cognitive transgressions
phylogeny
platonism
Opis:
In the paper we discuss the problem of limitations of freedom in mathematics and search for criteria which would differentiate the new concepts stemming from the historical ones from the new concepts that have opened unexpected ways of thinking and reasoning. We also investigate the emergence of category theory (CT) and its origins. In particular we explore the origins of the term functor and present the strong evidence that Eilenberg and Carnap could have learned the term from Kotarbiński and Tarski.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2020, 69; 33-65
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Logika racjonalności. W stronę modalnego platonizmu matematycznego
The Logic of Rationality. Towards Modal Mathematical Platonism
Autorzy:
Wilczek, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/691018.pdf
Data publikacji:
2011
Wydawca:
Copernicus Center Press
Tematy:
Alfred N. Whitehead
Alfred Tarski
logical consequence
ZFC
second-order set theory
forcing
modal logics
field of rationality
structuralism
platonism
Opis:
In this article Whitehead’s philosophy of mathematics is characterized as a Structural Second-Order Platonism and it is demonstrated that the Whiteheadian ontology is consistent with modern formal approaches to the foundation of mathematics. We follow the pathway taken by model-theoretically and semantically oriented philosophers. Consequently, it is supposed that all mathematical theories (understood as deductively closed set of sentences) determine their own models. These models exist mind-independently in the realm of eternal objects. From the metatheoretical point of view the hypothesis (posed by Józef Życiński) of the Rationality Field is explored. It is indicated that relationships between different models can be described in the language of modal logics and can further be axiomatized in the framework of the Second Order Set Theory. In conclusion, it is asserted that if any model (of a mathematical theory) is understood, in agreement with Whitehead’s philosophy, as a collection of eternal objects, which can be simultaneously realized in a single actual occasion, then our external world is governed by the hidden pattern encoded in the field of pure potentialities which constitute the above mentioned Field of Rationality. Therefore, this work can be regarded as the first step towards building a Logic of Rationality.
Źródło:
Zagadnienia Filozoficzne w Nauce; 2011, 49; 98-122
0867-8286
2451-0602
Pojawia się w:
Zagadnienia Filozoficzne w Nauce
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies