In this article Whitehead’s philosophy of mathematics is characterized as a Structural Second-Order Platonism and it is demonstrated that the Whiteheadian ontology is consistent with modern formal approaches to the foundation of mathematics. We follow the pathway taken by model-theoretically and semantically oriented philosophers. Consequently, it is supposed that all mathematical theories (understood as deductively closed set of sentences) determine their own models. These models exist mind-independently in the realm of eternal objects. From the metatheoretical point of view the hypothesis (posed by Józef Życiński) of the Rationality Field is explored. It is indicated that relationships between different models can be described in the language of modal logics and can further be axiomatized in the framework of the Second Order Set Theory. In conclusion, it is asserted that if any model (of a mathematical theory) is understood, in agreement with Whitehead’s philosophy, as a collection of eternal objects, which can be simultaneously realized in a single actual occasion, then our external world is governed by the hidden pattern encoded in the field of pure potentialities which constitute the above mentioned Field of Rationality. Therefore, this work can be regarded as the first step towards building a Logic of Rationality.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00