Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Li-ion" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Akumulatory litowe jako współczesne systemy magazynowania energii
Lithium batteries as modern energy storage systems
Autorzy:
Bakierska, M.
Chojnacka, A.
Powiązania:
https://bibliotekanauki.pl/articles/171974.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
akumulator litowy
materiał anodowy
materiały katodowe
elektrolity
Li-ion batteries
anode material
cathode material
electrolytes
Opis:
Due to the need for comprehensive management of energy resources, the storage of energy becomes an increasingly important issue. From the analysis of the advantages and drawbacks of all methods of energy storage, reversible electrochemical cells seem to be the most effective. Among them, rechargeable lithium batteries are characterized by high energy density (Fig. 1), high voltage and good cyclic stability [7]. Thus, they have been a dominant technology of energy storage systems for over a decade. It is expected that market demand for Li-Ion cells in the coming years will grow at a rapid rate, as a result of their widespread use inter alia in portable electronic devices such as mobile phones, smartphones, tablet PCs and laptops (Fig. 2) [9]. This article presents the characteristics of lithium batteries. The most commonly used cathode material in Li-Ion battery is layered cobalt oxide (130 mAh/g). However, it is expensive and toxic material, thus manganese-based compounds (LiMnO2, LiMn2O4), polyanionic olivine structured materials (LiFePO4) and silicates Li2MSiO4 (M = Mn, Co, Fe) gain an increasing interest. Due to the presence of two lithium ions in the structure of silicates, these materials have a high theoretical capacity, reaching about 300 mAh/g (Tab. 2) [1, 7–9, 11, 12]. Commercially used anode material is graphite (372 mAh/g). Nevertheless, scientists are still looking for new anode materials with a higher gravimetric capacity. Researches are primarily focused on modifications of the graphite or the use of lithium alloys with other elements (Sn, Al, Si) (Tab. 3) [1, 9, 12, 14, 15]. In the Lithium-Ion cells only non-aqueous solutions are used in the character of electrolytes. As a best material, the inorganic electrolyte lithium salts (such as LiBr, LiAsF6, LiPF6, LiBF4, etc.) soluble in organic solvents are used [1, 2, 7, 8]. However, the study on alternative solutions (polymer electrolytes) is very important. Continuous technological progress makes the research on improving the reversible electrochemical cells necessary to fulfill the expectations of users in order to improve the quality of their lives.
Źródło:
Wiadomości Chemiczne; 2014, 68, 9-10; 856-871
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Akumulatory litowo-jonowe stosowane w przemyśle motoryzacyjnym
The applications of lithium-ion batteries in automotive industry
Autorzy:
Knura, R.
Pacek, J.
Powiązania:
https://bibliotekanauki.pl/articles/171772.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
Li-ion
materiały elektrodowe
samochód hybrydowy
samochód elektryczny
electrode materials
hybrid electric vehicle
HEV
battery electric vehicle
BEV
Opis:
Due to limited resources of fossil fuels and overproduction of greenhouse gases, a need for alternative means for vehicle communication appeared. Because of that hybrid electric vehicles, as well as battery electric vehicles, were proposed to replace some of conventional vehicles based on internal combustion engine [3]. To their advantages over conventional cars belong environmental friendliness and better performance (in case of hybrid electric vehicles), but they also suffer from greater purchase costs and limited range (in case of most battery electric vehicles) [4, 6]. Presented work briefly characterizes four types of vehicles equipped with electric motor (mild hybrid, full hybrid, plug-in hybrid and battery electric vehicles) along with generalised presentation of their battery requirements [4, 6]. Further in this work, the lithium-ion (Li-ion) battery working principle was explained, along with characterisation of its limitations due to its design and requirements for inactive components e.g. 4-fold drop in specific capacity and energy density while moving from pure electrode material level to battery level [20]. Next, present Li-ion active components, such as LiCoO2, LiMnO2 and LiFePO4 cathodes and graphite anode along with their capacities and energy densities as well as other characteristic regarding (e.g. environmental friendliness, safety and cost) are shown. Moreover electrode materials e.g. nanocomposite anodes and cathodes, multi-electron cathodes (e.g. Li2MnSiO4), as well as Li-metal and Li4Ti5O12 anodes, with their advantages and disadvantages were described [15, 20]. Presented article was summarized by gathered opinions of battery electric vehicles users, who share their experience regarding their electric cars in a survey. One can tell that they are fairly satisfied with their purchase and that improvement in range of battery electric vehicles along with predictable government policy regarding electrification of cars are the most important factors when considering purchase of electric vehicle [36].
Źródło:
Wiadomości Chemiczne; 2018, 72, 3-4; 185-205
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recykling akumulatorów litowo-jonowych na potrzeby gospodarki o obiegu zamkniętym
Li-ion batteries recycling for circular economy approach
Autorzy:
Charzewska, Karolina
Powiązania:
https://bibliotekanauki.pl/articles/2200600.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
zamknięty obieg pierwiastków
recykling
akumulatory litowo-jonowe
magazynowanie energii
gospodarka o obiegu zamkniętym
zielona chemia
closed cycle of elements
recycling
Li-ion batteries
energy storage
circular economy
green chemistry
Opis:
Recycling of lithium-ion batteries is a response to the exploitation of natural resources of elements necessary for the production of energy storage devices and the desire to close the cycle of elements by reducing their loss. The replacement of fossil fuels by renewable energy sources will require batteries capable of storing significant amounts of energy. The effects of scientific projects on this subject are not limited to the research sphere, but have real economic, political and social consequences: independence from the supply of raw materials from distant areas or reduction of human rights violations in the case of conflict elements. Ethical and ecological supply of elements is regulated by the EU and the US, among others. Based on these premises, the article collects information on the recycling process and production of lithium-ion cells in order to illustrate the current market situation and highlight places where there are opportunities to introduce new solutions or improve processes with emphasis on the model of a circular economy.
Źródło:
Wiadomości Chemiczne; 2022, 76, 1-2; 59-78
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies