Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial ant" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Optimization of daily operations in the marine industry using ant colony optimization (ACO)-An artificial intelligence (AI) approach
Autorzy:
Sardar, A.
Anantharaman, M.
Garaniya, V.
Khan, F.
Powiązania:
https://bibliotekanauki.pl/articles/24201433.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
ant colony optimization
artificial intelligence
maritime transport
International Maritime Organization
international safety management
formal safety assessment
algorithms
Opis:
The maritime industry plays a crucial role in the global economy, with roughly 90% of world trade being conducted through the use of merchant ships and more than a million seafarers. Despite recent efforts to improve reliability and ship structure, the heavy dependence on human performance has led to a high number of casualties in the industry. Decision errors are the primary cause of maritime accidents, with factors such as lack of situational awareness and attention deficit contributing to these errors. To address this issue, the study proposes an Ant Colony Optimization (ACO) based algorithm to design and validate a verified set of instructions for performing each daily operational task in a standardised manner. This AI-based approach can optimise the path for complex tasks, provide clear and sequential instructions, improve efficiency, and reduce the likelihood of human error by minimising personal preference and false assumptions. The proposed solution can be transformed into a globally accessible, standardised instructions manual, which can significantly contribute to minimising human error during daily operational tasks on ships.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 2; 290--295
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Verification of ships trajectory planning algorithms using real navigational data
Autorzy:
Lazarowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/117103.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Visibility Graph-search Algorithm (VGA)
Discrete Artificial Potential Field (DAPF)
real navigational data
ARPA
ship's trajectory planning
ship's trajectory planning algorithms
Ant Colony Optimization (ACO)
Trajectory Base Algorithm (TBA)
Opis:
The paper presents results of ship's safe trajectory planning algorithms verification. Real navigational data registered from a radar with an Automatic Radar Plotting Aid on board the research and training ship Horyzont II were used as input data to the algorithms. The algorithms verified in the presented research include the Ant Colony Optimization algorithm (ACO), the Trajectory Base Algorithm (TBA), the Visibility Graph-search Algorithm (VGA) ant the Discrete Artificial Potential Field algorithm (DAPF). Details concerning data registration and exemplary results obtained with the use or real navigational data are introduced and summarized in the paper. Presented results prove the applicability of proposed algorithms for solving the ship's safe trajectory planning problem.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 559-564
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies