Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ions" wg kryterium: Temat


Tytuł:
Electrokinetic and flotation behavior of rutile in the presence of lead ions and aluminium ions
Autorzy:
Cheng, Hongwei
Liu, Changmiao
Guo, Zhenxu
Feng, Ansheng
Wei, Min
Lv, Zihu
Wu, Dongyin
Zhao, Dengkui
Powiązania:
https://bibliotekanauki.pl/articles/110558.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
lead ions
aluminium ions
rutile
flotation
Opis:
The effects of Pb(II) ions and Al(III) ions on the electro kinetic and flotation behavior of rutile were investigated by micro-flotation tests, zeta potential measurements and solution chemistry analysis. Micro-flotation results indicate that the Pb(II) ions can effectively improve the flotation recovery of rutile while the Al(III) ions significantly inhibit the flotation of rutile. Zeta potential measurements reveal that a collector styrene phosphoric acid (SPA) can adsorb on the rutile surface after the addition of Pb(II) ions, but hardly adsorb on the rutile surface after the addition of Al(III) ions. Pb(II) ions adsorb on the rutile surface in the form of Pb(OH)+ and Pb(OH)2(s), and the latter one is the main reason that activates rutile flotation. Al(III) ions adsorb on the rutile surface mainly in the form of Al(OH)3(s), which prevent the direct interaction between the rutile and the collector, resulting in a decrease of rutile flotation recovery.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 2; 458-466
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on different behavior and mechanism of Ca(II) and Fe(III) adsorption on spodumene surface
Autorzy:
Yu, F.
Wang, Y.
Wang, J.
Xie, Z.
Powiązania:
https://bibliotekanauki.pl/articles/110230.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
spodumene surface
calcium ions
iron ions
adsorption mechanism
DFT calculation
Opis:
Behavior and mechanism of Ca2+ and Fe3+ adsorption on spodumene surface were investigated by micro flotation tests, zeta potential measurements, and density functional theory (DFT) calculation methods. The micro flotation tests showed that Ca2+ and Fe3+ activated the flotation of spodumene remarkably. However, the effect of Fe3+ was more significant than that of Ca2+. Additionally, Fe3+ significantly changed the zeta potential of spodumene while Ca2+ showed a little change. Meanwhile, the calculated adsorption energy of Fe3+ on spodumene surface was much greater than that of Ca2+ indicating that Fe3+ is more apt to be adsorbed on spodumene surface than Ca2+. The value of bond population in Ca-O illustrated that the bond of Ca-O consists of partial covalent proportion and some ionic component. On the contrary, the bond of Fe-O showed a relatively strong covalent property. The partial density of states (PDOS) of free Ca/Fe and the reacted O atom on spodumene (110) surface before and after the adsorption showed that Fe 3d orbital and O 2p orbital formed hybridization. The density of states (DOS) near the Fermi level of spodumene surface after adsorption with Fe3+ was much stronger than that with Ca2+.
Źródło:
Physicochemical Problems of Mineral Processing; 2014, 50, 2; 535-550
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of process water effect on the activation of sphalerite during differential flotation of Pb-Cu-Zn
Autorzy:
Gutiérrez Pérez, Victor Hugo
Olvera Vázquez, Seydy Lizbeth
Santos Madrid, Rocio
Regino Piña, Rafael
Cruz Ramírez, Alejandro
Rivera Salinas, Jorge Enrique
Alaniz Hernández, Daniel Israel
Powiązania:
https://bibliotekanauki.pl/articles/2146897.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sphalerite activation
process water
differential flotation
copper ions
lead ions
Opis:
This work was aimed to analyze the effect of concentration of Cu.2+ and Pb.2+ ions in flotation process water with sphalerite activation, the analysis was performed at Cozamin Mining flotation circuit. This analysis demonstrated that (i) it was possible to determine the relationship between Sodium Cyanide and Ammonium Bisulfite used as depressants and Cu.2+ and Pb.2+ contents in the process water. (ii) It also proved the relationship between lead and iron content in the head with the Pb.2+ ions in process water. According to the data gathered and analysis performed, (iii) it was also determined that it was possible to reuse process water as long as the use of Ammonium Bisulfite was reduced and recommended replacing the use of Sodium Cyanide with Zinc Sulfate (ZnSO4) as a depressant of Sphalerite. Additionally, the concentration of Cu.2+ and Pb.2+ ions in the water should be controlled in a range of 10 to 20 ppm and 0.10 to 0.20 ppm, respectively.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 3; art. no. 146906
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of polymer inclusion membranes doped with 1-hexyl-4-methylimidazole for pertraction of zinc(II) and other transition metal ions
Autorzy:
Ulewicz, M.
Radzyminska-Lenarcik, E.
Powiązania:
https://bibliotekanauki.pl/articles/110567.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
polymer inclusion membrane
PIM
metal ions separation
zinc(II)
transition metal ions
imidazole derivatives
Opis:
Transport of Zn(II) from unary aqueous chloride solutions and from solutions which contain mixtures of Cd(II), Co(II) and Ni(II) ions in source phases (cMe = 0.001 mol/dm3, pH = 6.0) across polymer inclusion membranes (PIMs) doped with 1-hexyl-4-methylimidazole as ion carrier was studied. The use of 1-hexyl-4-methylimidazole enables the separation of 98.5% Zn(II) from a unary solution and 96.9% from a quaternary solution of Zn(II)-Cd(II)-Co(II)-Ni(II) after running the process for 24 hours. Using that ion carrier, the metals are transported in the following order: Zn(II) > Cd(II) > Ni(II) > Co(II), and the selectivity coefficients of Zn(II)/Cd(II), Zn(II)/Ni(II), and Zn(II)/Co(II) are 12.9, 23.4 and 40.8, respectively. Findings of atomic force microscopy (AFM) examinations as well as thermograms of a polymer inclusion membrane containing 1-hexyl-4-methylimidazole are also presented. A membrane with 1.0 mol/dm3 of carrier has a porosity of 15.8%, and roughness of 6.6 nm. The membranes remain thermally stable at temperatures up to 200oC. The findings were compared with earlier-reported results for 1-hexylimidazole.
Źródło:
Physicochemical Problems of Mineral Processing; 2015, 51, 2; 447-460
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The mechanical aspect of titanium ion release after posterior instrumentation for early onset scoliosis
Autorzy:
Danielewicz, Anna
Fatyga, Marek
Wójciak-Kosior, Magdalena
Sawicki, Jan
Różańska-Boczula, Monika
Sowa, Ireneusz
Latalski, Michał
Powiązania:
https://bibliotekanauki.pl/articles/109528.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
scoliosis
metal ions
implant
titanium
mineralization
Opis:
Surgical treatment of early onset scoliosis (EOS) is connected with the risk of early and late complications. The aim of the study is to assess influence of the rod fracture on the titanium ion release (TIR) in traditional growing rods instrumentation for EOS.56 patients treated surgically due to EOS were divided into three groups: 1) a control-patients newly operated due to scoliosis, patients treated with the traditional growing rod (TGR) and TGR who had rod fracture (FGR) and required a surgical revision. Titanium quantification in blood sample, skin fragment (CT –clean tissue) andmacrosco-pically contaminated tissue located near the implant (DT –dirty tissue) was performed using high-resolution emission spectrometry with excitation in inductively coupled plasma.The mean serum titanium level in control, TGR, and FGR groups were 1.93 ± 0.8, 5.61 ± 0.23, and 4.43 ± 0.1 μg/dm3, respectively. The mean CT titanium level in control, TGR, and FGR groups were 0.0045 ± 0.001, 0.0035 ± 0.001and 0.0065 ± 6.8 mg/g, respectively. The mean DT titanium level in TGR and FGR groups was 0.59 ± 0.02, and 1.022 ± 0.03 mg/g, respectively.Implant leadsto the TIR into tissues and blood. Increasing the number of anchors increases the titanium content inthe CT TGR group. Mechanical damage to the implant has no significant effect on the increase of TIR
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 6; 1442-1449
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of flotation behavior and mechanism of cervantite activation by copper ions
Autorzy:
Wang, J.
Wang, Y.
Fu, K.
Xu, L.
Wang, Z.
Sun, H.
Xiao, J.
Powiązania:
https://bibliotekanauki.pl/articles/110228.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation
cervantite
copper ions
activation mechanism
Opis:
Copper-ion activation plays a highly important role in cervantite (Sb2O4) flotation. Without metal-ion activation, cervantite cannot be floated by sodium oleate. In this study, flotation tests were conducted to study the effect of Cu2+ on the flotation behaviours of cervantite and quartz (SiO2) as the main gangue mineral. Metal-ion adsorption capacities, zeta potentials, solution chemistry and X-ray photoelectron spectra were analyzed to study the adsorption behavior and mechanism of copper ions and sodium oleate interaction with the minerals surfaces. The results demonstrate that under weakly acidic conditions, cervantite can be flotated and separated from quartz by the addition of copper ions. The reason is that copper ions can be selectively adsorbed on the cervantite surface under weakly acidic conditions, thereby promoting the adsorption of sodium oleate onto the cervantite surface by chemical adsorption. Conversely, copper ions are weakly adsorbed on quartz surfaces below pH 6.1, and sodium oleate cannot be adsorbed on quartz surfaces by chemical adsorption. The hydroxy copper species are integral to the selective activation of cervantite over quartz.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 814-825
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adsorption behavior of calcium ions and its effect on cassiterite flotation
Autorzy:
Chen, Yumeng
Feng, Dongxia
Tong, Xiong
Powiązania:
https://bibliotekanauki.pl/articles/110731.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cassiterite
calcium ions
adsorption
flotation
salicylhydroxamic acid
Opis:
Naturally, most of the cassiterite co-exists with sparingly soluble calcite, which makes it difficult to be fully utilized. Due to the adsorption of calcium ions dissolved from calcite, surface properties of cassiterite and its floatability can be influenced. Adsorption tests show calcium ions can adsorb on cassiterite surface. In the presence of Ca2+, the zeta potentials of cassiterite shift to more positive values and the isoelectric point of cassiterite increases from pH 4.4 to pH 4.9. XPS results show that after calcium ions treatment, a strong calcium spectral peak at 347.65 eV is detected on the cassiterite surface and the chemical circumstance of oxygen atoms is changed. The presence of Ca2+ can significantly depressed the flotation behavior of cassiterite with salicylhydroxamic acid (SHA) as collector. Its recovery is decreased by 26.03% compared to that without Ca2+ at SHA dosage of 8.0×10-4 mol/dm3. When increasing SHA concentration to 9.0×10-4 mol/dm3 and above, the depression effect is partly compensated and the recovery rises by about 20%. Contact angle values of cassiterite measured by the bubble method correspond well to the flotation performance. Hence the depression mechanism of Ca2+ in cassiterite flotation can be interpreted in two aspects: 1) the consumption of SHA due to complexation reactions in pulp; 2) a decrease of effective adsorption site for SHA on cassiterite because of the adsorption of Ca2+.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 1; 258-267
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence and mechanism of Zn2+ on fluorite/calcite in sodium hexametaphosphate flotation system
Autorzy:
Ruitao, Liu
Dan, Liu
Ruofan, Sun
Daqian, Wang
Wenkang, Zhang
Yuebing, Liu
Shuming, Wen
Powiązania:
https://bibliotekanauki.pl/articles/2175451.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
fluorite
calcite
sodium hexametaphosphate
flotation
metal ions
Opis:
Fluorite and calcite have similar surface properties and natural floatability, so their flotation separation has always been a problem faced by the beneficiation industry. The key to flotation separation is the choice of depressants. Sodium hexametaphosphate (SHMP) has a good effect on fluorite calcite selective inhibition. In this paper, the effects of Zn2+ on the selective inhibition of SHMP in the flotation process of fluorite and calcite were studied through single mineral and artificial mixed mineral flotation experiments. Solution chemical calculation, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared spectroscopy (FT-IR) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) analyses investigated the mechanism of action of Zn2+, which had the most significant negative effect on the selective inhibition of SHMP. The results show that the main components of SHMP inhibiting minerals are HPO42- and H2PO4-, which can react with Ca active sites on the mineral surface to form hydrophilic Ca(H22PO4)2 and CaHPO4, while Zn2+ The presence of HPO42- in solution resulted in the formation of stable ZnHPO4 complexes, thereby weakening the inhibitory effect of SHMP on minerals.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 6; art. no. 151676
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Activation of quartz flotation by Cu2+, Ni2+ in the sodium ethylxanthogenate (EX) system
Autorzy:
Liu, Yang
Tong, Xiong
Xie, Rui-Qi
Xie, Xian
Song, Qiang
Fan, Pei-Qiang
Powiązania:
https://bibliotekanauki.pl/articles/24085981.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quartz
flotation
ions activation
sodium ethylxanthogenate
adsorption mechanism
Opis:
During the flotation of metal sulfide minerals, due to the interference of unavoidable ions, the quartz also partially floats in some cases. The studies on the mechanism of quartz being activated and floating up are still insufficient. In this study, the influence of the Cu2+ and Ni2+ unavoidable ions on the floatation of quartz was studied by micro-flotation experiments, adsorption detection, zeta potential measurement, solution composition calculation, infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses, and atomic force microscopy (AFM) observation. This provides a theoretical reference for further understanding the mechanism of sodium ethylxanthogenate and quartz surface, as well as the development of a new quartz depressant. The results of flotation showed that after activation by Cu2+ (1×10-4 mol/dm3) and Ni2+ (5×10-5 mol/dm3), the quartz was captured by sodium ethylxanthogenate (EX: 1.4×10-4 mol/dm3) under alkaline conditions (pH=10), while the best recoveries were obtained as 80% and 43%, respectively. The results of adsorption and zeta potential measurements showed that the precipitation rate of Cu2+ was greater than that of Ni2+ under alkaline conditions. Additionally, both Cu2+ and Ni2+ electrostatically adsorbed on the quartz surface and changed the zeta potential of quartz. The solution composition calculation further showed that Cu(OH)+, Cu(OH)2(s), and Ni(OH)+, Ni(OH)2(s) were the main components in the solution under alkaline conditions. The FT-IR and XPS analyses and AFM observations demonstrated that Cu and Ni species adsorbed on O atoms on the quartz surface, providing active sites for EX adsorption, and EX combines with Cu and Ni species on the quartz surface to generate -O-Cu-EX and -O-Ni-EX complexes. Finally, the quartz floated up due to the formation of hydrophobic products and firm adsorption.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 2; art. no. 166368
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
DFT and TOF-SIMS study of the interaction between hydrogen sulfide ion and malachite (–201) surface
Autorzy:
Mao, Yingbo
Wu, Dandan
Huang, Lingyun
Powiązania:
https://bibliotekanauki.pl/articles/1447053.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
malachite
hydrogen sulfide ions
sulfidation
DFT
TOF-SIMS
Opis:
In this paper, the mechanism of interaction between hydrogen sulfide ions and malachite was investigated using density functional theory (DFT) calculations and time of flight secondary ion mass spectrometry (TOF-SIMS). The DFT calculations showed that HS− adsorption on the malachite (−201) surface was stronger than that of S adsorption resulting from the higher number of electron transfers in the solution which accelerated the sulfidation reaction rate. Density of states (DOS) analysis showed that the near Fermi level was jointly contributed to by the Cu 3d, O 2p, O 2S, and S 3P orbits after adsorption of HS− on the malachite (–201)surface. It was found that the 2p orbital of O and the 3p orbital of S overlapped, indicating that S not only reacted with Cu, but also with O. The TOF-SIMS detected S− and CuS2− fragment ion peaks in the 0−150 m/z negative segment of mass spectra. TOF-SIMS also showed that copper sulfide films of certain thicknesses were formed, demonstrating the effectiveness of hydrogen sulfide sulfidation in flotation processes.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 5; 71-79
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of pH on surface characteristics and flotation of sulfidized cerussite
Autorzy:
Feng, Q.
Wen, S.
Zhao, W.
Liu, J.
Liu, D.
Powiązania:
https://bibliotekanauki.pl/articles/110234.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cerussite
sulfidization
excessive sulfide ions
pH
surface analysis
Opis:
The effect of pH on surface characteristic and flotation of sulfidized cerussite was studied by micro-flotation tests, dissolution experiments, scanning electron microscopy (SEM) energy dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). The micro-flotation tests demonstrated that higher recovery of cerussite was achieved in acidic solutions than that in alkaline solutions. Despite the addition of high collector concentrations, cerussite flotation did not improved in alkaline solutions. The dissolution performance of sulfide-treated cerussite at different pH values indicated that the lead sulfide layer on the surface of sulfide-treated cerussite could exist in acidic solutions and it was more stable at acidic pH than in alkaline solutions. This finding was proved by the SEM-EDS and XPS analyses.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 2; 676-689
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanism of Ca2+/Fe3+-based synergistic activation of quartz
Autorzy:
Liu, Rongxiang
Yang, Zhanfeng
Li, Jie
Li, Qiang
Wang, Zhenjiang
Luo, Xiaofeng
Powiązania:
https://bibliotekanauki.pl/articles/2200345.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quartz
flotation
co-activation
metal ions
sodium dodecyl sulfonate
Opis:
Although the flotation behaviors of iron concentrate and quartz are significantly different, quartz is the primary factor that affects the quality of iron concentrate. The flotation mechanism of quartz in the presence of mixed cationic Ca2+/Fe3+-co-activated SDS catcher was studied by conducting flotation tests with pure quartz mineral. The solution chemical calculation method, zeta potential calculation method, Fourier transform infrared (FT-IR) spectroscopy technique, X-ray photoelectron spectroscopy (XPS) technique, and other techniques were used to conduct the studies. The results showed that the maximum Ca2+/Fe3+-based synergistic activation of the flotation recovery process could be achieved in a certain range of pH values when three different activators were added sequentially. Analysis of the zeta potential values revealed that the Ca2+/Fe3+-activated quartz surface improved the extent of positive electricity generated and enhanced the SDS adsorption ability of the quartz surface. Results obtained using the FT-IR technique revealed that Ca2+/Fe3+ exerted a synergistic effect, and the adsorption process exploited the single oxygen bond interactions in the monovalent hydroxyl complex Ca(OH)+ and the double oxygen bond interactions in the Fe(OH)3 precipitates. Results obtained using the XPS technique revealed that the synergistic effect exerted by Ca2+/Fe3+ was significantly stronger than that exerted by Ca2+ or Fe3+ alone. The stable Fe-based six-membered chelate ring was formed on the surface of quartz when Fe3+ was the activator, and the chain-like Ca-based complex was formed when Ca2+ was the activator. The adsorption process on the surface of quartz proceeded following chemical as well as physical adsorption pathways. The results revealed that Ca(OH)+ and Fe(OH)3 played prominent roles during the activation of quartz surfaces in the presence of Ca2+/Fe3+.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 1; art. no. 162262
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of hydrothermal modification of titanium phosphate on the adsorption affinity towards cadmium ions
Autorzy:
Janusz, Władysław
Khalameida, Svietlana
Skwarek, Ewa
Sydorchuk, Vladimir
Charmas, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/110216.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
titanium phosphate
FTIR-ATR
hydrothermal treatment
adsorption
cadmium ions
Opis:
The effect of hydrothermal treatment of the gel or xerogel oftitanium phosphate (TiP) sample on the surface properties was studied usingthe EDS and FTIR ATR methods. The results show that the hydrothermal treatment of initial titanium phosphate decreases the amount of physically adsorbed water but increases the surface concentration of phosphate groups. Supplementary measurements of electrokinetic properties of modified and hydrothermally modified titanium phosphate samples confirmed an increase of the concentration of acidic groups on theTiP surface. The adsorption affinity of titanium phosphate towards cadmium ions was discussed. It was found that at a low initial concentration of cadmium ions adsorption affinity increases as a resultof hydrothermal treatment of TiP gel.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 6; 1568-1576
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of sorption capacity of biochar-based sorbents for capturing heavy-metallic ions from water media
Autorzy:
Bąk, Justyna
Powiązania:
https://bibliotekanauki.pl/articles/2146935.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
biochar
chitosan
magnetic
M(II) ions sorption
nonlinear regression
Opis:
To develop the sorption efficiency of heavy metals: Cd(II), Co(II), Zn(II) and Pb(II) ions the biochar was modified by chitosan, FeSO4 and NaBH4. The morphology, physical structure and chemical composition of the biochar based sorbents were characterized by the scanning electron miscroscopy method, N2 adsorption and desorption isotherms, X-ray diffractometry as well as the Fourier transform infrared spectroscopywith the attenuated total reflectance analyses. The research of M(II) ions sorption was carried out as a function of pH (2-6), interaction time (0-360 minutes) and temperature (293, 313, 333 K). The maximum sorption was obtained by the ChBC for Zn(II) ions - 19.23 mg/g and for MBC-Pb(II) - 19.11 mg/g. Different kinetic models as well as both isotherm and thermodynamic equations were used the sorption data modelling. For Cd(II), Co(II) and Zn(II) ions the nonlinear regression of the Elovich equation gave the best fit for the experimental data. On the other hand, for Pb(II) ions, the nonlinear forms of pseudo first order and pseudo second order show a better match. The value of the correlation coefficient >0.960 determined from the Freundlich isotherm model is the highest suggesting a good fit to the experimental data. The thermodynamic parameters: ΔG°, ΔH° and ΔS° were listed and indicated that the process is spontaneous and endothermic in nature. The desorption efficiency was determined with the use of nitric, hydrochloric and sulfuric acids and the largest desorption yield for Pb(II)-ChBC equal 99.5 % was gained applying HNO3.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 5; art. no. 150265
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of seawater main components on frothability in the flotation of Cu-Mo sulfide ore
Autorzy:
Laskowski, J. S.
Castro, S.
Ramos, O.
Powiązania:
https://bibliotekanauki.pl/articles/109747.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
seawater
froth stability
Cu-Mo flotation
magnesium ions
molybdenite flotation
Opis:
The main problem in the flotation of Cu-Mo sulfide ores in seawater is poor floatability of molybdenite at pH>9.5. Froth stability plays a very important role in determining concentrate grade and recovery in flotation operations and in this paper both floatability and frothability have been tested. The frothability have been studied by measuring froth equilibrium layer thickness in a modified laboratory flotation cell. Two chemical aspects of seawater need to be considered: the content of NaCl (around 87% of salinity), and the concentration of secondary ions (around 13%) (sulfate, magnesium, calcium, bicarbonate ions, etc.). Seawater, NaCl solutions, and seawater’s ions were found to depress frothability. The effect of pH on frothability over the pH range from 9.5 to 11, which is very strong in freshwater, becomes negligible in seawater and the tested electrolyte solutions. The analysis of the relationship between the mechanisms of molybdenite depression and the loss of frothability in seawater implies that the effects of the studied ions on molybdenite floatability and on pulp frothability are different. While depression of molybdenite floatability could be tracked down to magnesium hydroxide precipitation as a main culprit, the depression of frothability is a much more complicated issue.
Źródło:
Physicochemical Problems of Mineral Processing; 2014, 50, 1; 17-29
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies