Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "inverse method" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
On some inverse problem for bi-parabolic equation with observed data in L$\text{}^{p}$ spaces
Autorzy:
Tuan, Nguyen Huy
Powiązania:
https://bibliotekanauki.pl/articles/2048891.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
biparabolic equation
Fourier truncation method
inverse source parabolic
inverse initial problem
regularization
Sobolev embeddings
Opis:
The bi-parabolic equation has many practical significance in the field of heat transfer. The objective of the paper is to provide a regularized problem for bi-parabolic equation when the observed data are obtained in $L^{p}$. We are interested in looking at three types of inverse problems. Regularization results in the L$\text{}^{2}$ space appears in many related papers, but the survey results are rare in $L^{p}$, p≠2. The first problem related to the inverse source problem when the source function has split form. For this problem, we introduce the error between the Fourier regularized solution and the exact solution in $L^{p}$ spaces. For the inverse initial problem for both linear and nonlinear cases, we applied the Fourier series truncation method. Under the terminal input data observed in $L^{p}$, we obtain the approximated solution also in the space $L^{p}$. Under some reasonable smoothness assumptions of the exact solution, the error between the the regularized solution and the exact solution are derived in the space $L^{p}$. This paper seems to generalize to previous results for bi-parabolic equation on this direction.
Źródło:
Opuscula Mathematica; 2022, 42, 2; 305-335
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An inverse backward problem for degenerate two-dimensional parabolic equation
Autorzy:
Atifi, Khalid
Essoufi, El-Hassan
Khouiti, Bouchra
Powiązania:
https://bibliotekanauki.pl/articles/255085.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
data assimilation
adjoint method
regularization
heat equation
inverse problem
degenerate equations
optimization
Opis:
This paper deals with the determination of an initial condition in the degenerate two-dimensional parabolic equation [formula], where Ω is an open, bounded subset of R2, a [formula] with a ≥0 everywhere, and [formula], with initial and boundary conditions [formula] from final observations. This inverse problem is formulated as a minimization problem using the output least squares approach with the Tikhonov regularization. To show the convergence of the descent method, we prove the Lipschitz continuity of the gradient of the Tikhonov functional. Also we present some numerical experiments to show the performance and stability of the proposed approach.
Źródło:
Opuscula Mathematica; 2020, 40, 4; 427-449
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An algorithm for finding a common solution for a system of mixed equilibrium problem, quasi-variational inclusion problem and fixed point problem of nonexpansive semigroup
Autorzy:
Min, L.
Chang, S.
Zuo, P.
Powiązania:
https://bibliotekanauki.pl/articles/255589.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
nonexpansive semigroup
mixed equilibrium problem
viscosity approximation method
quasi-variational inclusion problem
multi-valued maximal monotone mappings
alpha-inverse-strongly monotone mapping
Opis:
In this paper, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed points for a nonexpansive semigroup and the set of solutions of the quasi-variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in a Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in the literature.
Źródło:
Opuscula Mathematica; 2010, 30, 4; 465-484
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies