Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dirichlet space" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Volterra integral operators on a family of Dirichlet-Morrey spaces
Autorzy:
Hu, Lian
Liu, Xiaosong
Powiązania:
https://bibliotekanauki.pl/articles/29519523.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Dirichlet-Morrey type space
Carleson measure
Volterra integral operators
bounded operators
essential norm
Opis:
A family of Dirichlet-Morrey spaces $ \mathcal{D}_{\lambda,K} $ of functions analytic in the open unit disk $ \mathbb{D} $ are defined in this paper. We completely characterize the boundedness of the Volterra integral operators $ T_g, I_g $ and the multiplication operator $ M_g $ on the space $ \mathcal{D}_{\lambda,K} $. In addition, the compactness and essential norm of the operators $ T_g $ and $ I_g $ on $ \mathcal{D}_{\lambda,K} $ are also investigated.
Źródło:
Opuscula Mathematica; 2023, 43, 5; 633-649
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operator representations of function algebras and functional calculus
Autorzy:
Juratoni, A.
Suciu, N.
Powiązania:
https://bibliotekanauki.pl/articles/254987.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
weak*-Dirichlet algebra
Hardy space
operator representation
semispectral measure
Opis:
This paper deals with some operator representations φ of a weak*-Dirichlet algebra A, which can be extended to the Hardy spaces Hp(m), associated to A and to a representing measure m of A, for 1 ≤ p ≤ ∞. A characterization for the existence of an extension φp of φ to Lp(m) is given in the terms of a semispectral measure Fφ of φ. For the case when the closure in Lp(m) of the kernel in A of m is a simply invariant subspace, it is proved that the map φp/Hp(m) can be reduced to a functional calculus, which is induced by an operator of class Cρ in the Nagy-Foias sense. A description of the Radon-Nikodym derivative of Fφ is obtained, and the log-integrability of this derivative is proved. An application to the scalar case, shows that the homomorphisms of A which are bounded in Lp(m) norm, form the range of an embedding of the open unit disc into a Gleason part of A.
Źródło:
Opuscula Mathematica; 2011, 31, 2; 237-255
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Frames and factorization of graph Laplacians
Autorzy:
Jorgensen, P.
Tian, F.
Powiązania:
https://bibliotekanauki.pl/articles/255936.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
unbounded operators
deficiency-indices
Hilbert space
boundary values
weighted graph
reproducing kernel
Dirichlet form
graph Laplacian
resistance network
harmonic analysis
frame
Parseval frame
Friedrichs extension
reversible random walk
resistance distance
energy Hilbert space
Opis:
Using functions from electrical networks (graphs with resistors assigned to edges), we prove existence (with explicit formulas) of a canonical Parseval frame in the energy Hilbert space [formula] of a prescribed infinite (or finite) network. Outside degenerate cases, our Parseval frame is not an orthonormal basis. We apply our frame to prove a number of explicit results: With our Parseval frame and related closable operators in [formula] we characterize the Priedrichs extension of the [formula]-graph Laplacian. We consider infinite connected network-graphs G = (V, E), V for vertices, and E for edges. To every conductance function c on the edges E of G, there is an associated pair [formula] where [formula] in an energy Hilbert space, and Δ (=Δc) is the c-graph Laplacian; both depending on the choice of conductance function c. When a conductance function is given, there is a current-induced orientation on the set of edges and an associated natural Parseval frame in [formula] consisting of dipoles. Now Δ is a well-defined semibounded Hermitian operator in both of the Hilbert [formula] and [formula]. It is known to automatically be essentially selfadjoint as an [formula]-operator, but generally not as an [formula] operator. Hence as an [formula] operator it has a Friedrichs extension. In this paper we offer two results for the Priedrichs extension: a characterization and a factorization. The latter is via [formula].
Źródło:
Opuscula Mathematica; 2015, 35, 3; 293-332
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies