Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Studzinski, J." wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Prognozowanie obciążenia hydraulicznego miejskiego systemu wodociągowego z wykorzystaniem modeli rozmytych typu TSK
Forecasting hydraulic load of urban water supply system using TSK fuzzy models
Autorzy:
Stachura, M.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/237351.pdf
Data publikacji:
2014
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
Sieć wodociągowa
pobór wody
modelowanie
prognozowanie
Water supply system
water demand
modeling
forecasting
Opis:
Przedstawiono możliwości prognozowania dobowego poboru wody w miejskim systemie wodociągowym. W tym celu wykorzystano modele o strukturze Takagi-Sugeno-Kanga (TSK), w których następnikiem jest klasyczny model liniowy uwzględniający dynamikę, co pozwala na określenie ich struktury jako „modeli liniowych rozmywanych strefowo”. W przeprowadzonych rozważaniach wykorzystano dane (o liczebności 974) pochodzące z sieci wodociągowej Rzeszowa obejmujące przedział czasu od 01-07-2005 do 29-02-2008. Na podstawie zarejestrowanych danych porównano tygodniowe wartości poboru wody w różnych porach roku. Kolejno przedstawiono modele TSK oraz sposób ich wyznaczania. Wykazano, że modelowanie może odbyć się w oparciu o znajomość tygodniowych zmian poboru wody, a wynikowy model pozwala prognozować wartości poboru wody w szerokim zakresie zmienności. Uzyskane wyniki przy różnych kombinacjach rozmywania i doboru struktury konkluzji modelu były porównywalne, z czego wynika, że wykorzystywana metoda wyznaczania modeli rozmytych może być stosowana do określania właściwości dynamicznych procesów, w przypadku których nie jest znany dokładny opis modelowanych zjawisk.
The paper presents possibilities of daily water demand forecasting for municipal water supply system. For this purpose, Takagi-Sugeno-Kang’s (TSK) models were applied. In this type of models the conclusion is in the form of a classical linear function, which allows describing their structure as ‛fuzzified linear models’. For the purpose of this study data from the water supply network for the city of Rzeszow was used (974 samples). It covered the period from 1 July 2005 to 29 February 2008. Based on the collected data weakly water demand values were compared for different seasons. Subsequent TSK models were described together with the way they were developed. It was shown that modeling could be based on weakly water demand data and that resulting model allowed predicting water demand values over a wide range of variability. The results received for different combinations of fuzzification and model conclusion structure selection were comparable. Therefore, it could be concluded that the method used for fuzzy model development might be used to determine dynamic properties of the processes for which the exact description of modeled phenomena was unknown.
Źródło:
Ochrona Środowiska; 2014, 36, 1; 57-60
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod czarnej skrzynki do prognozowania wartości wybranych wskaźników jakości ścieków dopływających do oczyszczalni komunalnej
Black-box forecasting of selected indicator values for influent wastewater quality in municipal treatment plant
Autorzy:
Szeląg, B.
Bartkiewicz, L.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/236740.pdf
Data publikacji:
2016
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
modelowanie
prognozowanie jakości ścieków metoda MARS
metoda lasów losowych (RF)
metoda samoorganizujących się sieci neuronowych (SOM)
metoda drzew wzmacnianych (BT) metoda analizy składowych
głównych (PCA)
sewage
modeling
sewage quality forecasting
MARS (multivariate adaptive regression spline)
random forest (RF)
self-organizing map (SOM)
boosted trees (BT)
principal component analysis (PCA)
Opis:
Prognozowanie ilości i jakości ścieków dopływających do oczyszczalni komunalnej z odpowiednim wyprzedzeniem czasowym daje możliwość optymalnego sterowania wieloma parametrami procesów oczyszczania ścieków. Dlatego prowadzi się badania mające na celu opracowanie modeli matematycznych (fizykalnych deterministycznych i operatorowych statystycznych), prognozujących zarówno ilość, jak i jakość ścieków dopływających do oczyszczalni. W artykule zbadano możliwość zastosowania prostszych modeli operatorowych do prognozowania wartości wybranych wskaźników jakości ścieków na dopływie do oczyszczalni (BZT5, zawiesiny ogólne, azot ogólny i amonowy, fosfor ogólny) jedynie na podstawie wyników pomiarów natężenia przepływu ścieków oraz – w celu porównania – na podstawie ich zmierzonych wartości. Do tego celu zastosowano metody czarnej skrzynki typu MARS oraz lasy losowe (RF). Dodatkowo przedstawiono możliwość połączenia metody lasów losowych z modelem klasyfikacyjnym (RF+SOM). Do identyfikacji danych określających zmienność wybranych wskaźników jakości ścieków zastosowano metody drzew wzmacnianych (BT) i analizy składowych głównych (PCA). Modele opracowano na podstawie wyników ciągłych pomiarów dobowych przeprowadzonych w latach 2013–2015 w oczyszczalni ścieków komunalnych w Rzeszowie.
Forecasting the amount and quality of wastewater flowing into a treatment plant sufficiently in advance, enables effective control of numerous treatment process parameters. Therefore, mathematical (physical deterministic and time series statistical) models forecasting both the amount and quality of wastewater inflow into a sewage treatment plant are under development. In this paper, a possibility of simpler time series models application to forecasting values of selected indicators (biochemical oxygen demand (BOD5), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and ammonium (NH4+)) of sewage quality in the inflow into a treatment plant was investigated. The research was based solely on sewage flow rate data and – for the purpose of comparison – the actual measured indicator values. For this purpose, MARS type black-box and random forest (RF) methods were used. Also, a possibility of combining the RF method with a classification model (RF+SOM) was investigated. Boosted trees (BT) and principal component analysis (PCA) methods were applied for identification of data that determine variability of the selected sewage quality indicators. The models were developed on the basis of continuous daily measurements performed in the period of 2013–2015 in the municipal sewage treatment plant in Rzeszow.
Źródło:
Ochrona Środowiska; 2016, 38, 4; 39-46
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena wpływu zmiennych wejściowych i struktury modelu sztucznej sieci neuronowej na prognozowanie dopływu ścieków komunalnych do oczyszczalni
Impact assessment of input variables and ANN model structure on forecasting wastewater inflow into sewage treatment plants
Autorzy:
Bartkiewicz, L.
Szelag, B.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/237035.pdf
Data publikacji:
2016
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
oczyszczalnia ścieków
dopływ ścieków
modelowanie
prognozowanie
SSN
współczynnik korelacji
sewage treatment plant
wastewater inflow
modeling
forecasting
ANN
correlation coefficient
Opis:
Ze względu na stochastyczny charakter zjawiska dopływu ścieków do oczyszczalni, występują duże nierównomierności zarówno ilości, jak i jakości ścieków, co ma znaczący wpływ na funkcjonowanie obiektów technologicznych oczyszczalni. Z tego względu celowe jest prognozowanie wartości dopływu ścieków, co pozwala na przygotowanie obiektu na występowanie zdarzeń anormalnych, mogących doprowadzić do zaburzeń w działaniu urządzeń oczyszczalni. W artykule przedstawiono wyniki modelowania wartości dopływu ścieków z zastosowaniem sztucznych sieci neuronowych. W przeprowadzonych analizach wykorzystano wyniki trzyletnich pomiarów wysokości opadów atmosferycznych oraz dopływu ścieków komunalnych do miejskich oczyszczalni w Rzeszowie i Kielcach. Do oceny wpływu zmiennych objaśniających na jakość modelu zastosowano metodę regresji logistycznej. Uwzględniono takie zmienne, jak wysokość opadów atmosferycznych oraz dobowy dopływ ścieków do oczyszczalni, które były odpowiednio opóźnione w stosunku do wartości prognozowanej. Zbadano także wpływ parametrów struktury rozpatrywanego modelu na dokładność prognozy tworzonych modeli matematycznych.
Due to a stochastic nature of sewage inflow into a treatment plant the inflow amount and its quality are highly variable which has a significant impact on the plant technological objects operation. Hence, sewage inflow forecasting would be desirable as it allows for mitigating the impact of abnormal events that might lead to major plant installation disruption. This paper presents the results of a raw sewage inflow modeling using Artificial Neural Networks (ANNs). Results of the three-year measurements of precipitation rates and sewage treatment plant inflow in Rzeszow and Kielce were used in the analyses. To assess the impact of exogenous variables on the model quality the logistic regression method was applied. The variables considered were the precipitation rate and daily sewage inflow, which were appropriately delayed in relation to the forecasted inflow values. Impact of the model structure parameters on accuracy of the mathematical model forecasts was also investigated.
Źródło:
Ochrona Środowiska; 2016, 38, 2; 29-36
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do prognozowania zawartości azotu ogólnego w odpływie z oczyszczalni ścieków
Application of artificial neural networks to forecasting total nitrogen content in secondary effluent from treatment plants
Autorzy:
Wąsik, E.
Chmielowski, K.
Studziński, J.
Szeląg, B.
Powiązania:
https://bibliotekanauki.pl/articles/237416.pdf
Data publikacji:
2018
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
ścieki oczyszczone
modelowanie
prognozowanie
sztuczne sieci neuronowe
azot ogólny
azot amonowy
azotyny
azotany
azot organiczny
sewage
secondary effluent
modeling
forecasting
artificial neural networks
total nitrogen
ammonia nitrogen
nitrites
nitrates
organic nitrogen
Opis:
Zaprezentowano możliwość wykorzystania sztucznych sieci neuronowych do prognozowania zawartości azotu ogólnego w ściekach oczyszczonych w funkcji jego różnych postaci występujących w odpływie z oczyszczalni ścieków. W badaniach zastosowano dane z lat 2010–2016, zawierające pomiary zawartości związków azotu w ściekach odpływających z oczyszczalni obsługującej aglomerację o równoważnej liczbie mieszkańców powyżej 100000. Zbiór danych wejściowych został wstępnie poddany analizie skupień i następnie wykorzystany do trenowania sieci neuronowej w postaci perceptronu wielowarstwowego. Na podstawie uzyskanych symulacji stwierdzono, że najmniejsze wartości błędów prognozy ilosci azotu ogólnego (2÷3%) uzyskano w wariancie, gdy jego wartość była funkcją wszystkich postaci azotu występujących w oczyszczonych ściekach. W przypadku modelu wykorzystującego jedynie dane o zawartości azotu nieorganicznego oraz azotanów otrzymane wyniki symulacji niewiele różniły się od wartości rzeczywistych, na co wskazuje bardzo duża wartość współczynnika korelacji (>97%). Wartość średniego błędu bezwzględnego w tym przypadku zwiększyła się tylko o około 4 punkty procentowe do wartości 6,2% (proces uczenia) oraz 6,9% (proces testowania/walidacji) w stosunku do symulacji wykorzystującej wszystkie postacie azotu w ściekach.
Potential application of artifi cial neural networks (ANN) to forecast total nitrogen content (TNC) in treated wastewater was presented as a function of selected nitrogen forms present in the secondary effl uent. The analyzed data from the period of 2010–2016 covered measurements of the nitrogen content in the effl uent from the treatment plant servicing agglomeration with a population equivalent of more than 100,000. The input data set was initially subjected to cluster analysis and then, used to train a neural network in the form of a multilayer perceptron (MLP). The simulations demonstrated that the smallest error values for the forecast of TNC (2–3%) were obtained for the variant, the value of which was a function of all the forms of nitrogen present in the secondary effl uent. For the total nitrogen model based on inorganic nitrogen and nitrates data only, the simulation results did not differ signifi cantly from the actual values, as indicated by a very high correlation coeffi cient (over 97%). In this case, the value of the mean absolute error increased only by nearly 4% to 6.2% (learning process) or 6.9% (testing/validation process), compared to the simulation based on all the nitrogen forms in the sewage.
Źródło:
Ochrona Środowiska; 2018, 40, 1; 29-33
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie ilości ścieków dopływających do oczyszczalni za pomocą sztucznych sieci neuronowych z wykorzystaniem liniowej analizy dyskryminacyjnej
Forecasting the sewage inflow into a treatment plant using artificial neural networks and linear discriminant analysis
Autorzy:
Szeląg, B.
Studziński, J.
Chmielowski, K.
Leśniańska, A.
Rojek, I.
Powiązania:
https://bibliotekanauki.pl/articles/237303.pdf
Data publikacji:
2018
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
Wastewater inflow
sewage treatment plant
water level
daily precipitation
artificial neural networks
discriminant models
mean square error
mean percentage error
relative error
residual relative error
importance coefficient
dopływ ścieków
oczyszczalnia ścieków
poziom wody
opad dobowy
sztuczne sieci neuronowe
model dyskryminacyjny
błąd średniokwadratowy
średni błąd procentowy
błąd względny
względny błąd resztowy
współczynnik ważności
Opis:
W pracy przedstawiono wyniki prognozowania ilości ścieków dopływających do oczyszczalni komunalnej w Rzeszowie z wykorzystaniem perceptronowych wielowarstwowych sztucznych sieci neuronowych. W modelu prognostycznym przyjęto następujące zmienne niezależne: zmierzona ilość ścieków dopływających do oczyszczalni określona w poprzednich dobach, poziom wody w Wisłoku (odbiornik ścieków), suma dobowych opadów atmosferycznych oraz dobowa ilość wody tłoczonej do sieci wodociągowej. Przeprowadzone obliczenia wykazały, że wśród rozpatrywanych zmiennych istotny wpływ na zdolność predykcyjną modelu prognostycznego miał poziom wody w Wisłoku, wysokość opadów atmosferycznych oraz ilość ścieków dopływająca do obiektu zmierzona w poprzednich dniach. Analizowano również wpływ poszczególnych parametrów strukturalnych modelu opartego na sztucznych sieciach neuronowych na wyniki prognozowania. Przeprowadzone badania, z wykorzystaniem drzew klasyfikacyjnych, wykazały, że na liczbę neuronów w warstwie ukrytej wpływała liczba sygnałów wejściowych do modelu, natomiast rodzaj funkcji aktywacji w warstwach ukrytej i wyjściowej miał mniejsze znaczenie, co potwierdziły wartości o znaczeniu predykcyjnym. Badano również możliwość zastosowania liniowej analizy dyskryminacyjnej do oceny zdolności predykcyjnych skonstruowanych modeli prognostycznych. Uzyskane wyniki wykazały, że liniowa analiza dyskryminacyjna może być ciekawym narzędziem do oceny doboru zmiennych w modelu prognostycznym ilości ścieków dopływających do oczyszczalni.
The paper presents the results of forecasting the sewage inflow into the municipal wastewater treatment plant in Rzeszow using multilayer perceptron neural networks. For the forecast model, the following independent variables were adopted: the measured inflow volume to the treatment plant from the previous days, the water level in the Wislok River (effluent receiver), the total daily precipitation and the daily water inflow into the network. The calculations led to conclusions that variables substantially affecting the prognostic capacity of the forecast model included the water level in the Wislok River, the volume of precipitation and the sewage inflow to the facility from the previous days. Additionally, the impact of individual structural parameters of the model based on artificial neural networks on forecasting results was analyzed. The research conducted with the use of classification trees demonstrated that number of neurons in the hidden layer was influenced by the number of inputs to the model, while the type of activation function in the hidden and output layer was of minor importance which was confirmed by the data of prognostic value. The applicability of a linear discriminant analysis for assessment of prognostic ability of the constructed forecast models was also investigated. The results obtained demonstrated that the linear discriminant model might be an interesting assessment tool to select variables for the forecast model of sewage inflow to a treatment plant.
Źródło:
Ochrona Środowiska; 2018, 40, 4; 9-14
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies