Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Fragmentation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Influence of selected parameters of the fragmentation warhead on its effectiveness
Autorzy:
Panowicz, R.
Konarzewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/242782.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
directed fragmentation warheads
dynamics
finite element method
Opis:
The aim of the paper is to present the results of research on the influence of fragmentation warhead selected parameters on spreading capabilities. Fragmentation warhead is used to combat shaped charges and consists of metallic cover, explosive material and fragmentation liner. Fragmentation liner is built from metal balls or cylinders embedded in the resin. The explosives, initiated by a igniter, causes driving the liner in a few milliseconds up to about 900 m/s. The liner, as well as the case, fragments into many parts during this dynamic load. Geometric parameters of the fragmentation warhead affect the fragments velocity, their mass or geometric dimensions which are the most important parameters determining effectiveness of the warhead. In order properly to describe behaviour of fragmentation warhead arbitrary Lagrangian-Eulerian (ALE) and fluid-structure interaction (FSI) approach was used. In this method, the fragmentation liner is modelled using Lagrange description while the resin, the explosive charge and the surrounding air are modelled using Euler description. A three dimensional model of directed fragmen-tation warhead along with the fragmentation liner was prepared in MSC.Patran software and the dynamic phenomena analysis used a nonlinear finite element method implemented in the LS-DYNA program.
Źródło:
Journal of KONES; 2015, 22, 3; 193-200
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the detonation initiation point position influence on the cylindrical fragmentation warhead effectiveness
Autorzy:
Panowicz, R.
Konarzewski, M.
Trypolin, M.
Powiązania:
https://bibliotekanauki.pl/articles/243709.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
finite elements method
dynamics
directed fragmentation warheads
Opis:
The article presents results of the numerical analyses of the fragmentation warhead, which is one of the key elements of the missile used to combat anti-tank missiles. The fragmentation warhead is composed of such elements as outer casing, inner casing, explosive material and fragmentation liner. The fragmentation liner is built from steel spheres or cylinders embedded in epoxy resin. As a result of the explosive material detonation the pressure wave is generated, which affects the liner, causes its fragmentation, and drives each splinter. In order to perform numerical analyses the model of the cylindrical fragmentation warhead with a diameter of 80 millimetres and a length of 100 mm was prepared. The fragmentation liner consists of steel spheres with a diameter of 5 mm. It was assumed in simulation that the detonating material is the plastic explosive C4. The influence of the position of the explosive charge detonation initiation point of the fragmentation warhead on its effectiveness was studied. Effectiveness was evaluated by measuring the maximum speed obtained by the fragments and their spatial distribution. A three-dimensional model of the studied system has been prepared using the MSC Patran software and the numerical analyses were performed using the finite element method with explicit scheme of the time integration implemented in the LS-Dyna solver. To model gas domain Arbitrary Lagrangian-Eulerian (ALE) method was used and interaction between gas and solid body was modelled with FSI coupling.
Źródło:
Journal of KONES; 2016, 23, 1; 263-270
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Introduction to numerical analysis of directed fragmentation warheads
Autorzy:
Panowicz, R.
Nowak, J.
Konarzewski, M.
Niezgoda, T.
Powiązania:
https://bibliotekanauki.pl/articles/243275.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
finite elements method
dynamic
directed fragmentation warheads
Opis:
The aim of the paper is to presents one of the possible approaches to the numerical analysis of the behaviour of directed fragmentation war heads. These kinds of warheads consists of: metallic or composite cover, explosive material and a driven and fragmentation liner. The explosives are initiated by a booster causes driving the liner in a few milliseconds up to about 900 m/s. The liner fragments into many parts during this intensive and dynamic load. The fragments move in a cone which dimensions depend on the warheads shape and mechanical parameters of others warheads parts. All of the warheads elements are selected to meet the assumed parameters. The fragments velocity, their mass or geometric dimensions and cone angle are the most important parameters of the warheads fragments. Such a warhead, in the initial phase of the liner driving can be numerically modelled in the field of the continuum damage mechanics. Such a description is presented in other papers. This approach in a further phase of driving cause the increases of inaccuracies. Therefore, this paper proposes the use of ALE and FSI approach to describe the behaviour of the fragmentation warheads. A three-dimensional numerical model of the directed fragmentation warheads was made in the MSC Patran, and the dynamic phenomena analysis used a nonlinear finite element method implemented in the LS-Dyna program.
Źródło:
Journal of KONES; 2013, 20, 4; 319-325
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of destructor case type on behaviour of fragments in military vehicles active protection system
Autorzy:
Nowak, J.
Panowicz, R.
Konarzewski, M.
Powiązania:
https://bibliotekanauki.pl/articles/243721.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
finite elements method
simulation
military vehicles
directed fragmentation warheads
Opis:
Military vehicles active protection systems against cumulative missiles are designed to destroy the attacking missile before it hits the vehicle armour. The article presents the results of numerical studies of one of the elements of active protection system, which is the fragmentation destructor. A typical directed fragmentation warhead consists of a few parts: metallic or composite case, explosive material and fragmentation elements in the form of spheres, cylinders. The authors of this study evaluated the influence of the destructor case type – in particular material – on the effectiveness of the destructor. The effectiveness was evaluated on the basis of the maximum speed of balls. Evaluation was performed for the selected balls from each layer. Numerical calculations were performed for two materials of the case: steel and aluminum. It was assumed in simulation that the detonating material is the plastic explosive C4. The numerical analyses were based on the finite element method with the explicit time integration method implemented in the Ls-Dyna program. The interaction of solid and gaseous medium has been modelled using ALE coupling. Mechanical properties of the case were described using a simplified Johnson-Cook type material. The detonation process was described using programmed burn model approximations, and the behaviour of detonation products was described with the JWL (John, Wilkins, Lee) equation.
Źródło:
Journal of KONES; 2014, 21, 1; 183-187
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies