Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "genetic data" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
An analysis of the performance of genetic programming for realised volatility forecasting
Autorzy:
Yin, Z.
O’Sullivan, C.
Brabazon, A.
Powiązania:
https://bibliotekanauki.pl/articles/91765.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
realised volatility
genetic programming
high frequency data
Opis:
Traditionally, the volatility of daily returns in financial markets is modeled autoregressively using a time-series of lagged information. These autoregressive models exploit stylised empirical properties of volatility such as strong persistence, mean reversion and asymmetric dependence on lagged returns. While these methods can produce good forecasts, the approach is in essence atheoretical as it provides no insight into the nature of the causal factors and how they affect volatility. Many plausible explanatory variables relating market conditions and volatility have been identified in various studies but despite the volume of research, we lack a clear theoretical framework that links these factors together. This setting of a theory-weak environment suggests a useful role for powerful model induction methodologies such as Genetic Programming (GP). This study forecasts one-day ahead realised volatility (RV) using a GP methodology that incorporates information on market conditions including trading volume, number of transactions, bid-ask spread, average trading duration (waiting time between trades) and implied volatility. The forecasting performance from the evolved GP models is found to be significantly better than those numbers of benchmark forecasting models drawn from the finance literature, namely, the heterogeneous autoregressive (HAR) model, the generalized autoregressive conditional heteroscedasticity (GARCH) model, and a stepwise linear regression model (SR). Given the practical importance of improved forecasting performance for realised volatility this result is of significance for practitioners in financial markets.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 3; 155-172
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Minig rules of concept drift using genetic algorithm
Autorzy:
Vivekanandan, P.
Nedunchezhian, R.
Powiązania:
https://bibliotekanauki.pl/articles/91705.pdf
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
genetic algorithm
CDR-tree algorithm
rules
data mining
Opis:
In a database the data concepts changes over time and this phenomenon is called as concept drift. Rules of concept drift describe how the concept changes and sometimes they are interesting and mining those rules becomes more important. CDR tree algorithm is currently used to identify the rules of concept drift. Building a CDR tree becomes a complex process when the domain values of the attributes get increased. Genetic Algorithms are traditionally used for data mining tasks. In this paper, a Genetic Algorithm based approach is proposed for mining the rules of concept drift, which makes the mining task simpler and accurate when compared with the CDR-tree algorithm.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 2; 135-145
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies