Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "evolutionary algorithm" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Evolutionary algorithm for selecting dynamic signatures partitioning approach
Autorzy:
Zalasiński, Marcin
Laskowski, Łukasz
Niksa-Rynkiewicz, Tacjana
Cpałka, Krzysztof
Byrski, Aleksander
Przybyszewski, Krzysztof
Trippner, Paweł
Dong, Shi
Powiązania:
https://bibliotekanauki.pl/articles/2147146.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
identity verification
dynamic signature
hybrid partitions
partitions’ selection
evolutionary algorithm
Opis:
In the verification of identity, the aim is to increase effectiveness and reduce involvement of verified users. A good compromise between these issues is ensured by dynamic signature verification. The dynamic signature is represented by signals describing the position of the stylus in time. They can be used to determine the velocity or acceleration signal. Values of these signals can be analyzed, interpreted, selected, and compared. In this paper, we propose an approach that: (a) uses an evolutionary algorithm to create signature partitions in the time and velocity domains; (b) selects the most characteristic partitions in terms of matching with reference signatures; and (c) works individually for each user, eliminating the need of using skilled forgeries. The proposed approach was tested using Biosecure DS2 database which is a part of the DeepSignDB, a database with genuine dynamic signatures. Our simulations confirmed the correctness of the adopted assumptions.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 4; 267--279
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary algorithm with a configurable search mechanism
Autorzy:
Łapa, Krystian
Cpałka, Krzysztof
Laskowski, Łukasz
Cader, Andrzej
Zeng, Zhigang
Powiązania:
https://bibliotekanauki.pl/articles/1837536.pdf
Data publikacji:
2020
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
evolutionary algorithm
population-based algorithm
optimization
operator pool
operator selection
individual selection
Opis:
In this paper, we propose a new population-based evolutionary algorithm that automatically configures the used search mechanism during its operation, which consists in choosing for each individual of the population a single evolutionary operator from the pool. The pool of operators comes from various evolutionary algorithms. With this idea, a flexible balance between exploration and exploitation of the problem domain can be achieved. The approach proposed in this paper might offer an inspirational alternative in creating evolutionary algorithms and their modifications. Moreover, different strategies for mutating those parts of individuals that encode the used search operators are also taken into account. The effectiveness of the proposed algorithm has been tested using typical benchmarks used to test evolutionary algorithms.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2020, 10, 3; 151-171
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm
Autorzy:
El-Samak, A. F.
Ashour, W.
Powiązania:
https://bibliotekanauki.pl/articles/91810.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
combinatorial optimization problem
travel salesman problem
genetic algorithm
evolutionary computation algorithm
affinity propagation clustering technique
AP
problem optymalizacji kombinatorycznej
algorytm genetyczny
obliczenia ewolucyjne
Opis:
Combinatorial optimization problems, such as travel salesman problem, are usually NPhard and the solution space of this problem is very large. Therefore the set of feasible solutions cannot be evaluated one by one. The simple genetic algorithm is one of the most used evolutionary computation algorithms, that give a good solution for TSP, however, it takes much computational time. In this paper, Affinity Propagation Clustering Technique (AP) is used to optimize the performance of the Genetic Algorithm (GA) for solving TSP. The core idea, which is clustering cities into smaller clusters and solving each cluster using GA separately, thus the access to the optimal solution will be in less computational time. Numerical experiments show that the proposed algorithm can give a good results for TSP problem more than the simple GA.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 4; 239-245
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Advanced supervision of oil wells based on soft computing techniques
Autorzy:
Camargo, E.
Aguilar, J.
Powiązania:
https://bibliotekanauki.pl/articles/91828.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
intelligent model of supervision
evolutionary computation
fuzzy system
oil industry
operational diagnosis
petroleum wells
gas lift method
multilayer fuzzy system
genetic algorithm
Opis:
In this work is presented a hybrid intelligent model of supervision based on Evolutionary Computation and Fuzzy Systems to improve the performance of the Oil Industry, which is used for Operational Diagnosis in petroleum wells based on the gas lift (GL) method. The model is composed by two parts: a Multilayer Fuzzy System to identify the operational scenarios in an oil well and a genetic algorithm to maximize the production of oil and minimize the flow of gas injection, based on the restrictions of the process and the operational cost of production. Additionally, the first layers of the Multilayer Fuzzy System have specific tasks: the detection of operational failures, and the identification of the rate of gas that the well requires for production. In this way, our hybrid intelligent model implements supervision and control tasks.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 3; 215-225
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies