Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural networks control" wg kryterium: Temat


Wyświetlanie 1-12 z 12
Tytuł:
Neural Network-Based Narx Models in Non-Linear Adaptive Control
Autorzy:
Dzieliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/907986.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
automatyka
neural networks
adaptive control
nonlinear systems
Opis:
The applicability of approximate NARX models of non-linear dynamic systems is discussed. The models are obtained by a new version of Fourier analysis-based neural network also described in the paper. This constitutes a reformulation of a known method in a recursive manner, i.e. adapted to account for incoming data on-line. The method allows us to obtain an approximate model of the non-linear system. The estimation of the influence of the modelling error on the discrepancy between the model and real system outputs is given. Possible applications of this approach to the design of BIBO stable closed-loop control are proposed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2002, 12, 2; 235-240
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fuzzy and Neural Control of an Induction Motor
Autorzy:
Denai, M., A.
Attia, S. A.
Powiązania:
https://bibliotekanauki.pl/articles/908003.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
automatyka
fuzzy control
neural networks
induction motor
vector control
speed observer
Opis:
This paper presents some design approaches to hybrid control systems combining conventional control techniques with fuzzy logic and neural networks. Such a mixed implementation leads to a more effective control design with improved system performance and robustness. While conventional control allows different design objectives such as steady state and transient characteristics of the closed loop system to be specified, fuzzy logic and neural networks are integrated to overcome the problems with uncertainties in the plant parameters and structure encountered in the classical model-based design. Induction motors are characterised by complex, highly non-linear and time-varying dynamics and inaccessibility of some states and outputs for measurements, and hence can be considered as a challenging engineering problem. The advent of vector control techniques has partially solved induction motor control problems, because they are sensitive to drive parameter variations and performance may deteriorate if conventional controllers are used. Fuzzy logic and neural network-based controllers are considered as potential candidates for such an application. Three control approaches are developed and applied to adjust the speed of the drive system. The first control design combines the variable structure theory with the fuzzy logic concept. In the second approach neural networks are used in an internal model control structure. Finally, a fuzzy state feedback controller is developed based on the pole placement technique. A simulation study of these methods is presented. The effectiveness of these controllers is demonstrated for different operating conditions of the drive system.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2002, 12, 2; 221-233
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving the Generalization Ability of Neuro-Fuzzy Systems by e-Insensitive Learning
Autorzy:
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/908037.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
informatyka
fuzzy systems
neural networks
tolerant learning
generalization control
robust methods
Opis:
A new learning method tolerant of imprecision is introduced and used in neuro-fuzzy modelling. The proposed method makes it possible to dispose of an intrinsic inconsistency of neuro-fuzzy modelling, where zero-tolerance learning is used to obtain a fuzzy model tolerant of imprecision. This new method can be called e-insensitive learning, where, in order to fit the fuzzy model to real data, the e-insensitive loss function is used. e-insensitive learning leads to a model with minimal Vapnik-Chervonenkis dimension, which results in an improved generalization ability of this system. Another advantage of the proposed method is its robustness against outliers. This paper introduces two approaches to solving e-insensitive learning problem. The first approach leads to a quadratic programming problem with bound constraints and one linear equality constraint. The second approach leads to a problem of solving a system of linear inequalities. Two computationally efficient numerical methods for e-insensitive learning are proposed. Finally, examples are given to demonstrate the validity of the introduced methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2002, 12, 3; 437-447
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear predictive control based on neural multi-models
Autorzy:
Ławryńczuk, M.
Tatjewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/907773.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie procesami
sterowanie predykcyjne
sieć neuronowa
optymalizacja
linearyzacja
process control
model predictive control
neural networks
optimisation
linearisation
Opis:
This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Regressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not propagated. In order to avoid nonlinear optimisation, in the discussed suboptimal MPC algorithm the neural multi-model is linearised on-line and, as a result, the future control policy is found by solving of a quadratic programming problem.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 7-21
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A family of model predictive control algorithms with artificial neural networks
Autorzy:
Ławryńczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/929631.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie predykcyjne
sieć neuronowa
optymalizacja
linearyzacja
programowanie kwadratowe
predictive control
neural networks
optimisation
linearisation
quadratic programming
Opis:
This paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a neural model of the process is used on-line to determine local linearisation and a nonlinear free trajectory. Single-point and multi-point linearisation methods are discussed. The MPC-NPL structure is far more reliable and less computationally demanding in comparison with the MPC-NO one because it solves a quadratic programming problem, which can be done efficiently within a foreseeable time frame. At the same time, closed-loop performance of both algorithm classes is similar. Finally, a hybrid MPC algorithm with Nonlinear Prediction, Linearisation and Nonlinear optimisation (MPC-NPL-NO) is discussed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2007, 17, 2; 217-232
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft computing in model-based predictive control
Autorzy:
Tatjewski, P.
Ławryńczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/908473.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie procesami
sterowanie predykcyjne
system nieliniowy
system rozmyty
sieć neuronowa
process control
model predictive control
nonlinear systems
fuzzy systems
neural networks
Opis:
The application of fuzzy reasoning techniques and neural network structures to model-based predictive control (MPC) is studied. First, basic structures of MPC algorithms are reviewed. Then, applications of fuzzy systems of the Takagi-Sugeno type in explicit and numerical nonlinear MPC algorithms are presented. Next, many techniques using neural network modeling to improve structural or computational properties of MPC algorithms are presented and discussed, from a neural network model of a process in standard MPC structures to modeling parts or entire MPC controllers with neural networks. Finally, a simulation example and conclusions are given.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 1; 7-26
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks
Autorzy:
Ahmida, Z.
Charef, A.
Becerra, V. M.
Powiązania:
https://bibliotekanauki.pl/articles/908523.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system nieliniowy
sterowanie optymalne
radialna funkcja bazowa
sieć neuronowa
regulacja predykcyjna
sterowanie wyprzedzające
nonlinear systems
optimal control
radial basis functions
neural networks
predictive control
feedforward control
Opis:
A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed online by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear predictive control strategy with guaranteed stability. The feedforward neuro-controller has been designed using the concept of inverse mapping. The proposed control scheme is demonstrated on a simulated single-link robotic manipulator.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 3; 369-381
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network-based MRAC control of dynamic nonlinear systems
Autorzy:
Debbache, G.
Bennia, A.
Goléa, N.
Powiązania:
https://bibliotekanauki.pl/articles/908401.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
model odniesienia
system nieliniowy
sterowanie adaptacyjne
obserwator
stabilność
neural networks
reference model
nonlinear systems
adaptive control
observer
stability
Opis:
This paper presents direct model reference adaptive control for a class of nonlinear systems with unknown nonlinearities. The model following conditions are assured by using adaptive neural networks as the nonlinear state feedback controller. Both full state information and observer-based schemes are investigated. All the signals in the closed loop are guaranteed to be bounded and the system state is proven to converge to a small neighborhood of the reference model state. It is also shown that stability conditions can be formulated as linear matrix inequalities (LMI) that can be solved using efficient software algorithms. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters. Simulation results are presented to show the effectiveness of the approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 2; 219-232
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system
Autorzy:
Pedro, J. O.
Dahunsi, O. A.
Powiązania:
https://bibliotekanauki.pl/articles/907825.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
sterowanie bezpośrednie
sterowanie ze sprzężeniem zwrotnym
regulacja PID
komfort jazdy
układ zawieszenia
neural networks
direct adaptive control
feedback linearization control
PID control
ride comfort
suspension system
servo-hydraulics
Opis:
This paper presents the design of a neural network based feedback linearization (NNFBL) controller for a two degree-offreedom (DOF), quarter-car, servo-hydraulic vehicle suspension system. The main objective of the direct adaptive NNFBL controller is to improve the system's ride comfort and handling quality. A feedforward, multi-layer perceptron (MLP) neural network (NN) model that is well suited for control by discrete input-output linearization (NNIOL) is developed using input-output data sets obtained from mathematical model simulation. The NN model is trained using the Levenberg- Marquardt optimization algorithm. The proposed controller is compared with a constant-gain PID controller (based on the Ziegler-Nichols tuning method) during suspension travel setpoint tracking in the presence of deterministic road disturbance. Simulation results demonstrate the superior performance of the proposed direct adaptive NNFBL controller over the generic PID controller in rejecting the deterministic road disturbance. This superior performance is achieved at a much lower control cost within the stipulated constraints.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2011, 21, 1; 137-147
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Almost periodic synchronization of fuzzy cellular neural networks with time-varying delays via state-feedback and impulsive control
Autorzy:
Li, Yongkun
Wang, Huimei
Meng, Xiaofang
Powiązania:
https://bibliotekanauki.pl/articles/331017.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
almost periodic solution
fuzzy cellular neural networks
time varying delays
state feedback
impulsive control
rozwiązanie okresowe
sieć neuronowa
opóźnienie czasowe
sprzężenie zwrotne
Opis:
In this paper, we are concerned with drive-response synchronization for a class of fuzzy cellular neural networks with time varying delays. Based on the exponential dichotomy of linear differential equations, the Banach fixed point theorem and the differential inequality technique, we obtain the existence of almost periodic solutions of this class of networks. Then, we design a state feedback and an impulsive controller, and construct a suitable Lyapunov function to study the problem of global exponential almost periodic synchronization for the drive-response systems considered. At the end of the paper, we provide an example to verify the effectiveness of the theoretical results.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 2; 337-349
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear model predictive control of a boiler unit: a fault tolerant control study
Autorzy:
Patan, K.
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/331450.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rekurencyjna sieć neuronowa
model procesu
sterowanie predykcyjne
detekcja uszkodzeń
zbiornik przepływowy
recurrent neural networks
process model
predictive control
fault detection
boiler unit
Opis:
This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of different faulty situations, a fault compensation problem is also investigated. As the automatic control system can hide faults from being observed, the control system is equipped with a fault detection block. The fault detection module designed using the one-step ahead predictor and constant thresholds informs the user about any abnormal behaviour of the system even in the cases when faults are quickly and reliably compensated by the predictive controller.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 1; 225-237
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural Network Evaluation of Model-Based Residuals in Fault Detection of Time Delay Systems
Autorzy:
Zitek, P.
Mankova, R.
Hlava, J.
Powiązania:
https://bibliotekanauki.pl/articles/908288.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
wykrywanie błędu
model anizochroniczny
obserwator stanów
sterowanie wewnętrzne
sieć neuronowa
model-based fault detection
anisochronic model
state observer
internal model control
artificial neural networks
Opis:
Model-based fault detection becomes rather questionable if a supervised plant belongs to the class of systems with distributed parameters and significant delays. Two methods of fault detection have been developed for this class of plants, namely a method of functional (anisochronic) state observer and a modified internal model control scheme adopted for that purpose. Both these model schemes are employed to generate residuals, i.e. differences suitable to watch whether a malfunction of the control operation has occurred. Continuous evaluation of residuals is provided by means of a dynamic application of artificial neural networks (ANNs). This evaluation is carried out on the basis of prediction of time series evolution, where the accordance obtained between the prediction and measured outputs is used as a classification criterion. Implementation of both the methods is demonstrated on a laboratory-scale heat transfer set-up, making use of the Real-Time Matlab software.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 599-617
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies