Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "learning classifier systems" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Real–valued GCS classifier system
Autorzy:
Cielecki, Ł.
Unold, O.
Powiązania:
https://bibliotekanauki.pl/articles/929825.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
uczenie maszynowe
wnioskowanie gramatyczne
gramatyka bezkontekstowa
learning classifier systems
GCS
GAs
grammatical inference
context-free grammar
Opis:
Learning Classifier Systems (LCSs) have gained increasing interest in the genetic and evolutionary computation literature. Many real-world problems are not conveniently expressed using the ternary representation typically used by LCSs and for such problems an interval-based representation is preferable. A new model of LCSs is introduced to classify realvalued data. The approach applies the continous-valued context-free grammar-based system GCS. In order to handle data effectively, the terminal rules were replaced by the so-called environment probing rules. The rGCS model was tested on the checkerboard problem.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2007, 17, 4; 539-547
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic Neural Networks for Process Modelling in Fault Detection and Isolation Systems
Autorzy:
Korbicz, J.
Patan, K.
Obuchowicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/908291.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
wykrywanie błędu
sieć neuronowa dynamiczna
modelowanie nieliniowe
algorytm inteligentny
fault detection
dynamic neural networks
non-linear modelling
learning algorithms
FL-classifier
two-tank system
Opis:
A fault diagnosis scheme for unknown nonlinear dynamic systems with modules of residual generation and residual evaluation is considered. Main emphasis is placed upon designing a bank of neural networks with dynamic neurons that model a system diagnosed at normal and faulty operating points.To improve the quality of neural modelling, two optimization problems are included in the construction of such dynamic networks: searching for an optimal network architecture and the network training algorithm. To find a good solution, the effective well-known cascade-correlation algorithm is adapted here. The residuals generated by a bank of neural models are then evaluated by means of pattern classification. To illustrate the effectiveness of our approach, two applications are presented: a neural model of Narendra's system and a fault detection and identification system for the two-tank process.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 519-546
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies