Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sztuczne Sieci Neuronowe" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Prognozowanie ceny ogórka szklarniowego za pomocą sieci neuronowych
Forecasting a hothouse cucumber price with the use of neuron networks
Autorzy:
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/288377.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
prognozowanie
cena
artificial neuron networks
forecasting
price
Opis:
W pracy opracowano modele wykorzystujące sztuczne sieci neuronowe do prognozowania cen ogórka szklarniowego, przy czterech horyzontach prognoz. Porównano dokładności prognoz uzyskanych za pomocą różnych typów sieci neuronowych (liniowych, wielowarstwowych perceptronów i sieci o radialnych funkcjach bazowych). Jako najlepsze modele wybrano sieci liniowe, gdyż pozwalały na uzyskanie najdokładniejszych prognoz.
Models using neuron networks to forecast hothouse cucumber prices have been developed in this research, with four forecast horisons. The accuracy of forecasts obtained with the use of various types of neuron networks (linear, multilayer perceptrons and radial base function networks) have been compared. The linear networks have been selected as the best models as they have generated the most accurate forecasts.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 14, 14; 91-97
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytmy genetyczne jako narzędzie optymalizacyjne stosowane w sieciach neuronowych
Genetic algorithms as a optimization tool applied in neural networks
Autorzy:
Olszewski, T.
Boniecki, P.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/289865.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
algorytmy genetyczne
artificial neural networks
genetic algorithms
Opis:
Rewolucyjne wynalazki człowieka bardzo często powstają w wyniku obserwacji przyrody. Korzysta ona z rozwiązań najlepszych i optymalnych, tak więc wartych naśladowania. Niestety czasami jest to bardzo trudne. Przykładem może być mózg ludzki, którego funkcjonowania nadal nie rozumiemy do końca. Obserwując jego budowę stworzono Sztuczne Sieci Neuronowe, które są jego bardzo uproszczonym modelem mającym wykorzystywać jego najważniejsze cechy czyli zdolność uczenia i kojarzenia. Ewolucja naturalna jest swoistym procesem optymalizacyjnym mającym na celu najlepsze przystosowanie osobników do otaczającego świata, a co się z tym wiąże - przetrwania gatunku. Również mechanizmy ewolucyjne zostały wykorzystane przez człowieka. Jedną z metod odwzorowującą te mechanizmy są algorytmy genetyczne pozwalające na optymalne rozwiązanie różnych problemów. W artykule zostało przedstawione połączenie obu idei.
Revolutionary human inventions very often arise as a result of nature observation. Nature use the best and optimal solutions therefore deserves to copy. Unfortunately, sometimes it’s very hard. Human’s brain can be example, whose functions we don’t fully understand. As a result of observations of the build of human’s brain made artificial neural networks. They are its very simplified model, which use its main features: ability to learn and associate. Natural evolution is peculiar optimization process which purpose is the best adaptation of specimen to the surrounding world and it is in connection with survival of the species. Evolutionary mechanics were exploit by the human as well. Genetic algorithms are one of many methods which model evolutionary mechanics. They allow to find optimal solution for different problems. This article presents the combination both ideas.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 137-143
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytm rozpoznawania obrazów materiałów biologicznych
Algorithm for identification of biological materials images
Autorzy:
Łapczyńska-Kordon, B.
Langman, J.
Pedryc, N.
Powiązania:
https://bibliotekanauki.pl/articles/291148.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
rozpoznawanie obrazów
artificial neural networks
classification of images
Opis:
Opracowując wyniki pomiarów zarejestrowanych w postaci graficznej często mamy do czynienia z koniecznością porównywania ze sobą dwóch lub więcej obrazów. Nie zawsze zachodzi potrzeba porównywania ze sobą całych obrazów, nieraz wystarczające jest określenie różnic lub podobieństw na podstawie analizy pewnych ich charakterystycznych fragmentów. W pracy przedstawiono algorytm rozpoznawania obrazów na podstawie analizy rozmieszczenia na nich pewnych charakterystycznych wcześniej zdefiniowanych elementów. Zaprezentowano zarówno porównywanie z wykorzystaniem współrzędnych biegunowych metodą analityczną jak też próbę wykorzystania sztucznych sieci neuronowych do klasyfikacji obrazów.
In handling graphic representations of measurement results, need often arises to compare two or more images. It is not always necessary to compare the entire images. Sometimes it suffices to describe differences or similarities based on the analysis of certain characteristic fragments. This body of work presents an algorithm for recognizing images based on certain pre-set characteristic elements. A process of comparing – through the analytical method – using polar coordinates, as well as an attempt to utilize artificial neural networks for the classification of images is also presented.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 7, 7; 145-150
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe w modelowaniu procesów z ograniczonym zbiorem danych w inżynierii rolniczej
Neural networks in modeling agricultural engineering processes with limited date file
Autorzy:
Trajer, J.
Powiązania:
https://bibliotekanauki.pl/articles/286483.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
modelowanie
inżynieria rolnicza
artificial neural network
modeling
agricultural engineering
Opis:
Celem pracy jest przedstawienie metody neuronowego modelowania procesów z ograniczonym zbiorem danych. W przykładzie wykorzystano bazę danych zmian cen przechowywanej marchwi. Podano koncepcję budowy modelu neuronowego, który pomimo ograniczonego zbioru danych posiadać może zadowalające własności uogólniające, w sensie rozszerzenia zasięgu jego stosowalności poza zbiór uczący.
In this paper the analysis of the neural modeling of the agricultural engineering process was presented. The problems of effectiveness and quality neural networks in these processes was discussed.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 173-180
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza założeń dla modelowania plonu buraka cukrowego z wykorzystaniem sztucznych sieci neuronowych
The analysis of assumptions for modeling sugar beet crop with utilization of artificial neural networks
Autorzy:
Niedbała, G.
Przybył, J.
Boniecki, P.
Sęk, T.
Powiązania:
https://bibliotekanauki.pl/articles/287451.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
burak cukrowy
predykcja plonu
sztuczne sieci neuronowe
sugar beet
crop prediction
artificial neural network
Opis:
Do planowania plonu roślin, w tym plonu buraka cukrowego, wykorzystuje się modele prognostyczne. Istniejące modele mają zastosowanie zarówno w skali mikro - dla gospodarstwa, jaki i makro - dla regionu, czy kraju. Te modele, najczęściej zaimplementowane w programach komputerowych, ze względu na dużą liczbę danych wejściowych, są raczej niedostępne dla plantatora buraka cukrowego i rolniczych służb doradczych. Dlatego w pracy podjęto próbę opracowania własnego modelu plonu buraka cukrowego, opartego na metodach sztucznej inteligencji, przy wykorzystaniu możliwie niewielkiej liczby danych wejściowych. Założono, że dane wejściowe do modelu powinny stanowić podstawowe czynniki charakteryzujące siedlisko, użyte środki produkcji i przebieg warunków pogodowych.
In planning crops, including sugar beet crop, prognostic models are used. Existing models are utilized in micro scale - for the farm, as well as in macro scale - for region or country. These models, generally implemented in computer programmes, are rather unavailable for sugar beet planters and agricultural advisory services because of the huge amount of input data. That is why in this paper an attempt was made to create own model of sugar beet crop based on artificial intelligence methodology and the smallest possible amount of input data. It was assumed that input data for models should be the basic factors characterizing habitat, means of production used and weather conditions course.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 123-130
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja procesów decyzyjnych przy zastosowaniu wybranych metod sztucznej inteligencji
Optimization of decision processes using chosen methods of artificial intelligence
Autorzy:
Nowakowski, K.
Boniecki, P.
Majewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/288891.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
system ekspercki
optymalizacja
proces decyzyjny
artificial neural network
expert system
optimization
decision cases
Opis:
Już od dawna ludzie poszukują narzędzi, które pomogłyby im w procesie podejmowania trafnych decyzji. Ze względu na nikłe jak do tej pory sukcesy rozsądnym wydaje się być wykorzystanie w tym celu wybranych metod sztucznej inteligencji. Użycie w/w technologii opartych na symulacji pracy ludzkiego umysłu daje nowe możliwości. Połączenie techniki sztucznych sieci neuronowych i systemów ekspertowych pozwoliło na stworzenie wirtualnych doradców - specjalistów w wybranej dziedzinie. Pozwalają oni skutecznie pomóc w podejmowaniu konkretnych decyzji. Nie zrobią tego za człowieka ale dzięki wykorzystanym technologią mogą pomóc w podjęciu optymalnej decyzji.
Since a long time humans seek tools which would help them take accurate decisions. Because of very little success so far, choosing methods of artificial intelligence seems to be reasonable. Using mentioned technologies based on simulation of work of human mind gives new possibilities. The connection of technique of artificial neural network and expert systems permitted to create virtual advisers' - experts in chosen field. They permit to help treat concrete decisions effectively. They will not make it instead of humans but thanks to used technology they can help undertake optimal decision.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 131-136
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena efektywności neuronowego prognozowania w oparciu o wybrane metody na przykładzie dystrybucji produktów rolniczych
Assessment of effectiveness of the neural prediction based on selected methods exemplified by distribution of agricultural products
Autorzy:
Koszela, K.
Boniecki, P.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/287927.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczna inteligencja
sztuczne sieci neuronowe
prognozowanie
szeregi czasowe
artificial intelligence
artificial neural networks
prediction
time series
Opis:
Prognozowanie staje się bardzo ważnym etapem w każdej działalności. W przypadku dystrybucji produktów rolniczych mamy do czynienia z szeregiem złożonych bodźców, które przekładają się na wynik końcowy. Natomiast jakość tych prognoz ma ogromne znaczenie na kolejne etapy w łańcuchu produkcyjno-dystrybucyjnym. Sieci neuronowe są bardzo wysublimowaną techniką modelowania, zdolną odwzorować bardzo złożone funkcje. Modelowanie z wykorzystaniem sztucznych sieci neuronowych stosuje się wówczas, gdy nie jest znany dokładny opis matematyczny rozpatrywanego zjawiska, natomiast dobrze określone są jego wejścia i wyjścia. Sztuczna sieć neuronowa potrafi nauczyć się rozpoznawać analizowany problem, dając szybko odpowiedź na zmieniające się parametry wejściowe procesu. W pracy przedstawiono porównanie dwóch metod neuronowego modelowania sprzedaży wybranego produktu.
Prediction becomes a very important stage in many activities. In case of distributing agricultural products we deal with a number of stimuli which consequently transform into the end effect. It is clear that the quality of those predictions has a great influence on subsequent stages in the production and distribution chain. Neural networks are a sophisticated technique of modeling capable of reflecting very complex functions. Modeling using artificial neural networks is used when exact mathematical description of investigated phenomenon is not known but its inputs and outputs are well defined. Artificial neural network can learn to recognize the problem analyzed giving an answer to changing input parameters. In the paper two methods of neural modeling of a chosen agricultural product distribution were presented.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 69-76
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza i klasyfikacja obrazów suszu warzywnego z wykorzystaniem sztucznych sieci neuronowych
Analysis and classification of dried vegetables’ images with utilization of artificial neural networks
Autorzy:
Koszela, K.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/287257.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczna inteligencja
sztuczne sieci neuronowe
rozpoznawanie obiektów
przetwarzanie obrazów
artificial intelligence
artificial neural networks
object recognition
image processing
Opis:
W życiu codziennym bardzo często dokonujemy oceny naszego otoczenia i na tej podstawie podejmujemy decyzje o klasyfikacji obserwowanej sytuacji. Czynimy to w oparciu o obserwację otoczenia jak również napływającą z różnych źródeł informację z wykorzystaniem posiadanej wiedzy i zdolności. Proces ten jest dla nas całkowicie naturalny. Jeżeli jednak chcemy podobne zadanie zlecić systemowi komputerowemu to wówczas musimy wykonać wiele kroków, które pozwolą w części odwzorować za pomocą oprogramowania ludzką zdolność do obserwacji, uczenia się i dokonywania podejmowania ostatecznej decyzji w oparciu o posiadaną wiedzę. Wzrastający poziom komplikacji informacji wywołuje rosnące zapotrzebowanie na systemy zdolne do rozpoznawania i dokonywania klasyfikacji prezentowanych im obiektów. Jednym z takich obiektów jest susz warzywny, którego ocena jakości i jego klasyfikacja przysparza szereg problemów. W pracy przedstawiono koncepcję metody analizy obrazów suszu warzywnego i zastosowanie jej do szybkiego oszacowania udziału poszczególnych frakcji w badanej próbie pod względem barwy i kształtu.
In everyday life we often evaluate our surroundings and on this basis we make decisions about the classification of the observed situation. We do it by watching our surroundings as well as by analysing the information coming to us from various sources by means of the knowledge and the abilities we posses. This process is completely natural for us. However, if we want a computer system to do it, we need to make many steps in order to partly reflect in the software the human ability to observe, learn and make the final decision on the basis of the possessed knowledge. The increasing complexity of information causes a rising demand for systems capable of recognizing and classifying objects presented to them. One of such objects are dried vegetables whose quality evaluation and classification cause many problems. In the thesis the concept of dried vegetables’ image analysis method was presented as well as its application to quick colour and shape evaluation of individual fractions in a tested sample.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 77-82
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuralna predykcja wyników procesu równoczesnej biosyntezy inulinazy i inwertazy przez Aspergillus niger w warunkach wybranych stresów abiotycznych
Neural prediction of the results of the process of simultaneous biosynthesis of inulinase and invertase by Aspergillus niger under conditions of selected abiotic stresses
Autorzy:
Pielecki, J.
Skwarcz, J.
Powiązania:
https://bibliotekanauki.pl/articles/292235.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
inulinaza
inwertaza
grzyb nitkowaty
Aspergillus niger
stres termiczny
stres tlenowy
neural networks
inulinase
invertase
filiform fungus
thermal stress
oxygen stress
Opis:
W pracy zaprezentowano zastosowania sztucznych sieci neuronowych do modelowania związków przyczynowo-skutkowych w biotechnologicznym procesie jednoczesnej nadprodukcji inulinazy i inwertazy zewnątrzkomórkowej przez grzyb nitkowaty Aspergillus niger w warunkach stresu termicznego i tlenowego. Do analizy danych zastosowano sieć o architekturze warstwowej. Wyniki obliczone przez sieć neuronową weryfikowano doświadczalnie w warunkach wgłębnych hodowli wstrząsanych.
The paper presents applications of artificial neural networks in modeling of "if and when" relations in the biotechnological process of simultaneous overproduction of inulinase and extracellular invertase by filiform fungus Aspergillus niger under thermal and oxygen stress conditions. The data were analyzed using a network of layer architecture. The results calculated by the neural network were verified empirically under immersion conditions of agitated cultures.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 14, 14; 287-294
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa metoda maksymalizacji wartości wyników równoczesnej produkcji enzymów przez drożdże Kluyveromyces marxianus K-4
Neural method of maximizing the values of the results of the simultaneous production of enzymes by yeast Kluyveromyces marxianus K-4
Autorzy:
Pielecki, J.
Skwarcz, J.
Powiązania:
https://bibliotekanauki.pl/articles/287986.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
inulinaza
inwetaza
drożdże Kluyveromyces marxianus
stres termiczny
stres tlenowy
artificial neural networks
inulinase
invertase
filiform fungus
yeast Kluyveromyces marxianus
thermal stress
oxygen stress
Opis:
W pracy zaprezentowano zastosowania sztucznych sieci neuronowych do modelowania związków przyczynowo-skutkowych w biotechnologicznym procesie jednoczesnej nadprodukcji inulinazy i inwertazy zewnątrzkomórkowej przez drożdże K.marxianus w warunkach stresu termicznego i tlenowego. Do analizy danych zastosowano sieć o architekturze warstwowej. Wyniki obliczone przez sieć neuronową weryfikowano doświadczalnie w warunkach wgłębnych hodowli wstrząsanych.
The paper presents applications of artificial neural networks in modeling of "if and when" relations in the biotechnological process of simultaneous overproduction of inulinase and extracellular invertase by yeast K.marxianus under thermal and oxygen stress conditions. The data were analyzed using a network of layer architecture. The results calculated by the neural network were verified empirically under immersion conditions of agitated cultures.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 14, 14; 295-300
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies