Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-means ++" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Application of Clustering Method in Different Geophysical Parameters for Researching Subsurface Environment
Zastosowanie metody klastrowania w różnych parametrach geofizycznych do badania środowiska podpowierzchniowego
Autorzy:
Le, Cuong Van Anh
Nguyen, Ngan Nhat Kim
Nguyen, Thuan Van
Powiązania:
https://bibliotekanauki.pl/articles/2172080.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
Electrical Resistivity Imaging
MASW
K-means Clustering
obrazowanie oporności elektrycznej
grupowanie K-średnich
Opis:
Safety of construction needs knowledge of physical parameters as stiffness or porosity of the subsurface environment. Combination of different geophysical methods such as electrical resistivity imaging and multichannel analysis of surface waves can provide distributions of resistivity and shear velocity which are responsible for the underground physical parameters. Their joint interpretation can solve individual problems of none-uniqueness of the solutions when expressing two inversion results to describe environment characteristics. In our work, the k-means clustering method can categorize the two parameters into specific zones that can help to interpret the geophysical data effectively. Our workflow consists of two stages in which two independent geophysical data are inverted and the k-means clustering is applied to the two results for achieving the specified groups. The collocated geophysical data are measured in District 9, Ho Chi Minh City, Vietnam. Matching with the geology drillhole information, the joint results generally present layered medium with the upper zone having smaller resistivity and shear velocity values and the bottom zone of stronger stiffness.
Bezpieczeństwo konstrukcji wymaga znajomości parametrów fizycznych, takich jak sztywność czy porowatość środowiska podpowierzchniowego. Połączenie różnych metod geofizycznych, takich jak obrazowanie rezystywności elektrycznej i wielokanałowa analiza fal powierzchniowych, może dostarczyć rozkłady rezystywności i prędkości ścinania, które są odpowiedzialne za parametry fizyczne podziemnych warstw. Ich wspólna interpretacja może rozwiązać indywidualne problemy niejednoznaczności rozwiązań przy wyrażaniu dwóch wyników inwersji do opisu cech środowiska. W naszej pracy metoda grupowania k-średnich może podzielić dwa parametry na określone strefy, co może pomóc w skutecznej interpretacji danych geofizycznych. Nasz przepływ pracy składa się z dwóch etapów, w których dwa niezależne dane geofizyczne są odwracane, a grupowanie k-średnich jest stosowane do dwóch wyników w celu uzyskania określonych grup. Zebrane dane geofizyczne są mierzone w Dystrykcie 9, Ho Chi Minh City, Wietnam. Dopasowując się do informacji uzyskanych z odwiertów geologicznych, wyniki połączeń ogólnie przedstawiają ośrodek warstwowy, w którym górna strefa ma mniejsze wartości rezystywności i prędkości ścinania, a dolna strefa ma większą sztywność.
Źródło:
Inżynieria Mineralna; 2022, 2; 39--47
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation of Homogeneous Regions of Gravity Field Properties by Machine Learning Method in Central Area of Vietnam
Autorzy:
Thi, Hong Phan
Minh, Phuong Do
Van, Huu Tran
Powiązania:
https://bibliotekanauki.pl/articles/27323265.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
K-means
unsupervised learning method
gravity field
central area of Vietnam
COSCAD 3D
Wietnam
właściwości fizyczne
grawitacja
Opis:
This paper presents the results of applying the unsupervised learning method (K-means clustering) on the gravity anomaly field in the central region of Vietnam to separate the research area into different clusters, which are homologous in physical properties. In order to achieve the optimal results, the input parameter plays an important role. In this paper, we chose 04 input attributes including the gravity anomalous field attribute, the horizontal gradient attribute, the variance attribute, and the tracing coefficient of the gravity anomalous axis. The obtained results have shown that the research area could be divided into 7 clusters, 9 clusters, 11 clusters, and 13 clusters with close characteristics of the physical properties of the gravity field. The research results show that the Southwest, the Center, and the South of the study area have complex changing physical properties, this result reflects the complicated tectonic activities in these areas with the presence of crumpled and fractured rock layers in different directions and these locations are the potential places to form endogenous mineral deposits of magma origin. The Northwest, the North, and the East parts of the research area witness negligible changes in the field's physical properties, reflecting the stability of the soil and rock layers in this area, with the direction of extending structure from the Northwest to the Southeast. The clustering results according to the K-means unsupervised learning algorithm in central Vietnam initially increase the reliability of the decisions of geologists and geophysicists in interpreting the geological structure and evaluating the origin of deep-hidden mineral deposits in the area.
Źródło:
Inżynieria Mineralna; 2023, 2; 97--102
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The K-means Grouping Method as a Mean to Control the Performance of the Production Process
Wykorzystanie metody grupowania k-średnich do kontroli wydajności procesu produkcyjnego
Autorzy:
Kęsek, Marek
Powiązania:
https://bibliotekanauki.pl/articles/318166.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
production process performance
clustering
k-means
production cycle
R language
VBA
process mining
bolting
wydajność procesu produkcyjnego
grupowanie (clusterng)
cykl produkcyjny
język R
kotwienie (bolting)
Opis:
The paper presents a concept of using clusters of objects using the k-means method to control the performance of the production process, which runs under variable conditions. The distribution of the production process performance in production cycles grouped according to similarity is the basis for controlling the performance of subsequent production cycles. The practical part of the paper contains an example of calculations carried out according to this concept using the VBA and R languages, and is relates to the bolting process in underground mines.
W artykule przedstawiono koncepcję wykorzystania grupowania obiektów metodą k-średnich do kontroli wydajności procesu produkcyjnego, który przebiega w zmiennych warunkach. Rozkłady wydajności procesu produkcyjnego w pogrupowanych pod względem podobieństwa cyklach produkcyjnych, stanowią podstawę kontroli wydajności kolejnych cykli produkcyjnych. Część praktyczna pracy zawiera przykład obliczeń przeprowadzonych według tej koncepcji z użyciem języka VBA oraz języka R i dotyczy procesu kotwienia w kopalniach podziemnych.
Źródło:
Inżynieria Mineralna; 2020, 1, 1; 257-264
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies