Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "polish space" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Strong Fubini properties of ideals
Autorzy:
Recław, Ireneusz
Zakrzewski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/1205274.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Polish space
Strong Fubini Property
σ-ideal
cardinal coefficients
measurability
Opis:

 Let I and J be σ-ideals on Polish spaces X and Y, respectively. We say that the pair ⟨I,J⟩ has the Strong Fubini Property (SFP) if for every set D ⊆ X× Y with measurable sections, if all its sections $D_x = {y: ⟨x,y⟩ ∈ D}$ are in J, then the sections $D^y = {x: ⟨x,y⟩ ∈ D}$ are in I for every y outside a set from J (``measurable" means being a member of the σ-algebra of Borel sets modulo sets from the respective σ-ideal). We study the question of which pairs of σ-ideals have the Strong Fubini Property. Since CH excludes this phenomenon completely, sufficient conditions for SFP are always independent of ZFC.
 We show, in particular, that:
 • if there exists a Lusin set of cardinality the continuum and every set of reals of cardinality the continuum contains a one-to-one Borel image of a non-meager set, then ⟨MGR(X), J⟩ has SFP for every J generated by a hereditary $п^1_1$ (in the Effros Borel structure) family of closed subsets of Y (MGR(X) is the σ-ideal of all meager subsets of X),
 • if there exists a Sierpiński set of cardinality the continuum and every set of reals of cardinality the continuum contains a one-to-one Borel image of a set of positive outer Lebesgue measure, then $⟨NULL_μ, J⟩$ has SFP if either $J= NULL_ν$ or J is generated by any of the following families of closed subsets of Y ($NULL_μ$ is the σ-ideal of all subsets of X having outer measure zero with respect to a Borel σ-finite continuous measure μ on X):
 (i) all compact sets,
 (ii) all closed sets in $NULL_ν$ for a Borel σ-finite continuous measure ν on Y,
 (iii) all closed subsets of a $п^1_1$ set A ⊆ Y.
Źródło:
Fundamenta Mathematicae; 1999, 159, 2; 135-152
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convexity ranks in higher dimensions
Autorzy:
Kojman, Menachem
Powiązania:
https://bibliotekanauki.pl/articles/1205064.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
convexity
convexity number
Polish vector space
continuum hypothesis
Cantor-Bendixson degree
Opis:
A subset of a vector space is called countably convex if it is a countable union of convex sets. Classification of countably convex subsets of topological vector spaces is addressed in this paper. An ordinal-valued rank function ϱ is introduced to measure the complexity of local nonconvexity points in subsets of topological vector spaces. Then ϱ is used to give a necessary and sufficient condition for countable convexity of closed sets. Theorem. Suppose that S is a closed subset of a Polish linear space. Then S is countably convex if and only if there exists $α < ω_1$ so that ϱ(x) < α for all x ∈ S. Classification of countably convex closed subsets of Polish linear spaces follows then easily. A similar classification (by a different rank function) was previously known for closed subset of $ℝ^2$ [3]. As an application of ϱ to Banach space geometry, it is proved that for every $α < ω_1$, the unit sphere of C(ωα) with the sup-norm has rank α. Furthermore, a countable compact metric space K is determined by the rank of the unit sphere of C(K) with the natural sup-norm: Theorem. If $K_1,K_1$ are countable compact metric spaces and $S_i$ is the unit sphere in $C(K_i)$ with the sup-norm, i = 1,2, then $ϱ(S_1) = ϱ(S_2)$ if and only if $K_1$ and $K_2$ are homeomorphic. Uncountably convex closed sets are also studied in dimension n > 2 and are seen to be drastically more complicated than uncountably convex closed subsets of $ℝ^2$
Źródło:
Fundamenta Mathematicae; 2000, 164, 2; 143-163
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies