A subset of a vector space is called countably convex if it is a countable union of convex sets. Classification of countably convex subsets of topological vector spaces is addressed in this paper.
An ordinal-valued rank function ϱ is introduced to measure the complexity of local nonconvexity points in subsets of topological vector spaces. Then ϱ is used to give a necessary and sufficient condition for countable convexity of closed sets.
Theorem. Suppose that S is a closed subset of a Polish linear space. Then S is countably convex if and only if there exists $α < ω_1$ so that ϱ(x) < α for all x ∈ S.
Classification of countably convex closed subsets of Polish linear spaces follows then easily. A similar classification (by a different rank function) was previously known for closed subset of $ℝ^2$ [3].
As an application of ϱ to Banach space geometry, it is proved that for every $α < ω_1$, the unit sphere of C(ωα) with the sup-norm has rank α. Furthermore, a countable compact metric space K is determined by the rank of the unit sphere of C(K) with the natural sup-norm:
Theorem. If $K_1,K_1$ are countable compact metric spaces and $S_i$ is the unit sphere in $C(K_i)$ with the sup-norm, i = 1,2, then $ϱ(S_1) = ϱ(S_2)$ if and only if $K_1$ and $K_2$ are homeomorphic.
Uncountably convex closed sets are also studied in dimension n > 2 and are seen to be drastically more complicated than uncountably convex closed subsets of $ℝ^2$
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00