- Tytuł:
- Graphs With Large Semipaired Domination Number
- Autorzy:
-
Haynes, Teresa W.
Henning, Michael A. - Powiązania:
- https://bibliotekanauki.pl/articles/31343332.pdf
- Data publikacji:
- 2019-08-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
paired-domination
semipaired domination - Opis:
- Let $G$ be a graph with vertex set $V$ and no isolated vertices. A subset $ S \subseteq V $ is a semipaired dominating set of $G$ if every vertex in $ V \backslash S $ is adjacent to a vertex in $S$ and $S$ can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number $ \gamma_{pr2}(G) $ is the minimum cardinality of a semipaired dominating set of $G$. We show that if $G$ is a connected graph $G$ of order $ n \ge 3 $, then \( \gamma_{pr2} (G) \le \tfrac{2}{3} n \), and we characterize the extremal graphs achieving equality in the bound.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 659-671
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki