Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Michael I" wg kryterium: Wszystkie pola


Tytuł:
Equating κ Maximum Degrees in Graphs without Short Cycles
Autorzy:
Fürst, Maximilian
Gentner, Michael
Jäger, Simon
Rautenbach, Dieter
Henning, Michael A.
Powiązania:
https://bibliotekanauki.pl/articles/31523205.pdf
Data publikacji:
2020-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
maximum degree
repeated degrees
repetition number
Opis:
For an integer $k$ at least 2, and a graph $G$, let $f_k(G)$ be the minimum cardinality of a set $X$ of vertices of $G$ such that $G − X$ has either $k$ vertices of maximum degree or order less than $k$. Caro and Yuster [Discrete Mathematics 310 (2010) 742–747] conjectured that, for every $k$, there is a constant $c_k$ such that \(f_k(G)≤c_k\sqrt{n(G)}\) for every graph $G$. Verifying a conjecture of Caro, Lauri, and Zarb [arXiv:1704.08472v1], we show the best possible result that, if t is a positive integer, and $F$ is a forest of order at most \(1/6(t^3+6t^2+17t+12)\), then $f_2(F) ≤ t$. We study $f_3(F)$ for forests $F$ in more detail obtaining similar almost tight results, and we establish upper bounds on $f_k(G)$ for graphs $G$ of girth at least 5. For graphs $G$ of girth more than $2p$, for $p$ at least 3, our results imply \(f_k(G)=O\bigg(n(G)\frac{p+1}{3_p}\bigg)\). Finally, we show that, for every fixed $k$, and every given forest $F$, the value of $f_k(F)$ can be determined in polynomial time.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 841-853
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on Domination Parameters in Graphs: A Brief Survey
Autorzy:
Henning, Michael A.
Powiązania:
https://bibliotekanauki.pl/articles/32313552.pdf
Data publikacji:
2022-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
bounds
domination parameters
Opis:
In this paper we present a brief survey of bounds on selected domination parameters. We focus primarily on bounds on domination parameters in terms of the order and minimum degree of the graph. We present a list of open problems and conjectures that have yet to be solved in the hope of attracting future researchers to the field.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 3; 665-708
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Characterization of Hypergraphs with Large Domination Number
Autorzy:
Henning, Michael A.
Löwenstein, Christian
Powiązania:
https://bibliotekanauki.pl/articles/31340924.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
transversal
hypergraph
Opis:
Let $ H = (V, E) $ be a hypergraph with vertex set $ V $ and edge set $ E $. A dominating set in $ H $ is a subset of vertices $ D \subseteq V $ such that for every vertex $ v \in V \ \backslash \ D $ there exists an edge $ \mathcal{e} \in E $ for which $ v \in \mathcal{e} $ and $ \mathcal{e} \cap D \ne \emptyset $. The domination number $ \gamma (H) $ is the minimum cardinality of a dominating set in $ H $. It is known [Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62-71] that for $ k \ge 5 $, if $ H $ is a hypergraph of order $ n $ and size $ m $ with all edges of size at least $ k $ and with no isolated vertex, then $ \gamma (H) \ge (n + \floor{ (k − 3)//2 } m) // ( \floor{ 3(k − 1)//2 } ) $. In this paper, we apply a recent result of the authors on hypergraphs with large transversal number [M.A. Henning and C. Löwenstein, A characterization of hypergraphs that achieve equality in the Chvátal-McDiarmid Theorem, Discrete Math. 323 (2014) 69-75] to characterize the hypergraphs achieving equality in this bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 427-438
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphs With Large Semipaired Domination Number
Autorzy:
Haynes, Teresa W.
Henning, Michael A.
Powiązania:
https://bibliotekanauki.pl/articles/31343332.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
paired-domination
semipaired domination
Opis:
Let $G$ be a graph with vertex set $V$ and no isolated vertices. A subset $ S \subseteq V $ is a semipaired dominating set of $G$ if every vertex in $ V \backslash S $ is adjacent to a vertex in $S$ and $S$ can be partitioned into two element subsets such that the vertices in each subset are at most distance two apart. The semipaired domination number $ \gamma_{pr2}(G) $ is the minimum cardinality of a semipaired dominating set of $G$. We show that if $G$ is a connected graph $G$ of order $ n \ge 3 $, then \( \gamma_{pr2} (G) \le \tfrac{2}{3} n \), and we characterize the extremal graphs achieving equality in the bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 659-671
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Decomposing Regular Graphs Into Isomorphic Double-Stars
Autorzy:
El-Zanati, Saad I.
Ermete, Marie
Hasty, James
Plantholt, Michael J.
Tipnis, Shailesh
Powiązania:
https://bibliotekanauki.pl/articles/31339115.pdf
Data publikacji:
2015-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph decomposition
double-stars
Opis:
A double-star is a tree with exactly two vertices of degree greater than 1. If $T$ is a double-star where the two vertices of degree greater than one have degrees $k_1+1$ and $k_2+1$, then $T$ is denoted by $S_{k_1,k_2}$. In this note, we show that every double-star with $n$ edges decomposes every $2n$-regular graph. We also show that the double-star $S_{k,k−1}$ decomposes every $2k$-regular graph that contains a perfect matching.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 1; 73-79
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Minimal Graphs with Disjoint Dominating and Paired-Dominating Sets
Autorzy:
Henning, Michael A.
Topp, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/32222686.pdf
Data publikacji:
2021-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
paired-domination
Opis:
A subset D ⊆ VG is a dominating set of G if every vertex in VG – D has a neighbor in D, while D is a paired-dominating set of G if D is a dominating set and the subgraph induced by D contains a perfect matching. A graph G is a DPDP -graph if it has a pair (D, P) of disjoint sets of vertices of G such that D is a dominating set and P is a paired-dominating set of G. The study of the DPDP -graphs was initiated by Southey and Henning [Cent. Eur. J. Math. 8 (2010) 459–467; J. Comb. Optim. 22 (2011) 217–234]. In this paper, we provide conditions which ensure that a graph is a DPDP -graph. In particular, we characterize the minimal DPDP -graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 3; 827-847
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hereditary Equality of Domination and Exponential Domination
Autorzy:
Henning, Michael A.
Jäger, Simon
Rautenbach, Dieter
Powiązania:
https://bibliotekanauki.pl/articles/31342424.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
exponential domination
hereditary class
Opis:
We characterize a large subclass of the class of those graphs G for which the exponential domination number of H equals the domination number of H for every induced subgraph H of G.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 275-285
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Accurate Domination in Graphs
Autorzy:
Cyman, Joanna
Henning, Michael A.
Topp, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/31343372.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination number
accurate domination number
tree
corona
Opis:
A dominating set of a graph G is a subset D ⊆ VG such that every vertex not in D is adjacent to at least one vertex in D. The cardinality of a smallest dominating set of G, denoted by γ(G), is the domination number of G. The accurate domination number of G, denoted by γa(G), is the cardinality of a smallest set D that is a dominating set of G and no |D|-element subset of VG \ D is a dominating set of G. We study graphs for which the accurate domination number is equal to the domination number. In particular, all trees G for which γa(G) = γ(G) are characterized. Furthermore, we compare the accurate domination number with the domination number of different coronas of a graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 615-627
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Graphs with Disjoint Dominating and 2-Dominating Sets
Autorzy:
Henning, Michael A.
Rall, Douglas F.
Powiązania:
https://bibliotekanauki.pl/articles/30146715.pdf
Data publikacji:
2013-03-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
2-domination
vertex partition
Opis:
A DD2-pair of a graph G is a pair (D,D2) of disjoint sets of vertices of G such that D is a dominating set and D2 is a 2-dominating set of G. Although there are infinitely many graphs that do not contain a DD2-pair, we show that every graph with minimum degree at least two has a DD2-pair. We provide a constructive characterization of trees that have a DD2-pair and show that K3,3 is the only connected graph with minimum degree at least three for which D ∪ D2 necessarily contains all vertices of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 1; 139-146
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Independent Domination in Planar Cubic Graphs
Autorzy:
Abrishami, Gholamreza
Henning, Michael A.
Rahbarnia, Freydoon
Powiązania:
https://bibliotekanauki.pl/articles/31343229.pdf
Data publikacji:
2019-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
independent domination number
domination number
cubic graphs
Opis:
A set $S$ of vertices in a graph $G$ is an independent dominating set of $G$ if $S$ is an independent set and every vertex not in $S$ is adjacent to a vertex in $S$. The independent domination number, $i(G)$, of $G$ is the minimum cardinality of an independent dominating set. Goddard and Henning [Discrete Math. 313 (2013) 839–854] posed the conjecture that if \( G \not\in \{ K_{3,3}, C_5 \square K_2 \} \) is a connected, cubic graph on $n$ vertices, then $i(G) \le 3/8 n $, where $ C_5 \square K_2 $ is the 5-prism. As an application of known result, we observe that this conjecture is true when $G$ is 2-connected and planar, and we provide an infinite family of such graphs that achieve the bound. We conjecture that if $G$ is a bipartite, planar, cubic graph of order $n$, then $ i(G) \le 1/3 n $, and we provide an infinite family of such graphs that achieve this bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 4; 841-853
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds On The Disjunctive Total Domination Number Of A Tree
Autorzy:
Henning, Michael A.
Naicker, Viroshan
Powiązania:
https://bibliotekanauki.pl/articles/31341124.pdf
Data publikacji:
2016-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
total domination
disjunctive total domination
trees
Opis:
Let $G$ be a graph with no isolated vertex. In this paper, we study a parameter that is a relaxation of arguably the most important domination parameter, namely the total domination number, $ \gamma_t(G) $. A set $S$ of vertices in $G$ is a disjunctive total dominating set of $G$ if every vertex is adjacent to a vertex of $S$ or has at least two vertices in $S$ at distance 2 from it. The disjunctive total domination number, $ \gamma_t^d (G) $, is the minimum cardinality of such a set. We observe that $ \gamma_t^d (G) \ge \gamma_t (G) $. A leaf of $G$ is a vertex of degree 1, while a support vertex of $G$ is a vertex adjacent to a leaf. We show that if $T$ is a tree of order $n$ with $ \mathcal{l} $ leaves and $s$ support vertices, then $ 2(n−\mathcal{l}+3) // 5 \le \gamma_t^d (T) \le (n+s−1)//2 $ and we characterize the families of trees which attain these bounds. For every tree $T$, we show have $ \gamma_t(T) // \gamma_t^d (T) <2 $ and this bound is asymptotically tight.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 1; 153-171
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Domination Game: Extremal Families for the 3/5-Conjecture for Forests
Autorzy:
Henning, Michael A.
Löwenstein, Christian
Powiązania:
https://bibliotekanauki.pl/articles/31341965.pdf
Data publikacji:
2017-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination game
3/5 conjecture
Opis:
In the domination game on a graph $G$, the players Dominator and Staller alternately select vertices of $G$. Each vertex chosen must strictly increase the number of vertices dominated. This process eventually produces a dominating set of $G$; Dominator aims to minimize the size of this set, while Staller aims to maximize it. The size of the dominating set produced under optimal play is the game domination number of $G$, denoted by $ \gamma_g (G) $. Kinnersley, West and Zamani [SIAM J. Discrete Math. 27 (2013) 2090-2107] posted their 3/5-Conjecture that $ \gamma_g (G) \le 3/5 n $ for every isolate-free forest on n vertices. Brešar, Klavžar, Košmrlj and Rall [Discrete Appl. Math. 161 (2013) 1308-1316] presented a construction that yields an infinite family of trees that attain the conjectured 3/5-bound. In this paper, we provide a much larger, but simpler, construction of extremal trees. We conjecture that if $ G $ is an isolate-free forest on $ n $ vertices satisfying $ \gamma_g (G) = 3/5 n $, then every component of $G$ belongs to our construction.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 2; 369-381
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak Saturation Numbers for Sparse Graphs
Autorzy:
Faudree, Ralph J.
Gould, Ronald J.
Jacobson, Michael S.
Powiązania:
https://bibliotekanauki.pl/articles/29787240.pdf
Data publikacji:
2013-09-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
saturated graphs
sparse graphs
weak saturation
Opis:
For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs of order n that are weakly F-saturated will be denoted by wSAT(n, F), and those graphs in wSAT(n, F) with wsat(n, F) edges will be denoted by wSAT(n, F). The precise value of wsat(n, T) for many families of sparse graphs, and in particular for many trees, will be determined. More specifically, families of trees for which wsat(n, T) = |T|−2 will be determined. The maximum and minimum values of wsat(n, T) for the class of all trees will be given. Some properties of wsat(n, T) and wSAT(n, T) for trees will be discussed. Keywords: saturated graphs, sparse graphs, weak saturation.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 4; 677-693
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gaps in the Saturation Spectrum of Trees
Autorzy:
Horn, Paul
Gould, Ronald J.
Jacobson, Michael S.
Thomas, Brent J.
Powiązania:
https://bibliotekanauki.pl/articles/31343596.pdf
Data publikacji:
2019-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
saturation spectrum
tree
saturation number
Opis:
A graph G is H-saturated if H is not a subgraph of G but the addition of any edge from the complement of G to G results in a copy of H. The minimum number of edges (the size) of an H-saturated graph on n vertices is denoted sat(n,H), while the maximum size is the well studied extremal number, ex(n,H). The saturation spectrum for a graph H is the set of sizes of H-saturated graphs between sat(n,H) and ex(n,H). In this paper we show that paths, trees with a vertex adjacent to many leaves, and brooms have a gap in the saturation spectrum.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 1; 157-170
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Restrained Domination in Self-Complementary Graphs
Autorzy:
Desormeaux, Wyatt J.
Haynes, Teresa W.
Henning, Michael A.
Powiązania:
https://bibliotekanauki.pl/articles/32083901.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
complement
restrained domination
self-complementary graph
Opis:
A self-complementary graph is a graph isomorphic to its complement. A set S of vertices in a graph G is a restrained dominating set if every vertex in V(G) \ S is adjacent to a vertex in S and to a vertex in V(G) \ S. The restrained domination number of a graph G is the minimum cardinality of a restrained dominating set of G. In this paper, we study restrained domination in self-complementary graphs. In particular, we characterize the self-complementary graphs having equal domination and restrained domination numbers.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 633-645
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies