Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "evolutionary learning" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Learning board evaluation function for Othello by hybridizing coevolution with temporal difference learning
Autorzy:
Szubert, M.
Jaśkowski, W.
Krawiec, K.
Powiązania:
https://bibliotekanauki.pl/articles/206175.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
evolutionary computation
coevolutionary algorithms
reinforcement learning
memetic computing
game strategy learning
Opis:
Hybridization of global and local search techniques has already produced promising results in the fields of optimization and machine learning. It is commonly presumed that approaches employing this idea, like memetic algorithms combining evolutionary algorithms and local search, benefit from complementarity of constituent methods and maintain the right balance between exploration and exploitation of the search space. While such extensions of evolutionary algorithms have been intensively studied, hybrids of local search with coevolutionary algorithms have not received much attention. In this paper we attempt to fill this gap by presenting Coevolutionary Temporal Difference Learning (CTDL) that works by interlacing global search provided by competitive coevolution and local search by means of temporal difference learning. We verify CTDL by applying it to the board game of Othello, where it learns board evaluation functions represented by a linear architecture of weighted piece counter. The results of a computational experiment show CTDL superiority compared to coevolutionary algorithm and temporal difference learning alone, both in terms of performance of elaborated strategies and computational cost. To further exploit CTDL potential, we extend it by an archive that keeps track of selected well-performing solutions found so far and uses them to improve search convergence. The overall conclusion is that the fusion of various forms of coevolution with a gradient-based local search can be highly beneficial and deserves further study.
Źródło:
Control and Cybernetics; 2011, 40, 3; 805-831
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A survey of big data classification strategies
Autorzy:
Banchhor, Chitrakant
Srinivasu, N.
Powiązania:
https://bibliotekanauki.pl/articles/2050171.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
big data
data mining
MapReduce
classification
machine learning
evolutionary intelligence
deep learning
Opis:
Big data plays nowadays a major role in finance, industry, medicine, and various other fields. In this survey, 50 research papers are reviewed regarding different big data classification techniques presented and/or used in the respective studies. The classification techniques are categorized into machine learning, evolutionary intelligence, fuzzy-based approaches, deep learning and so on. The research gaps and the challenges of the big data classification, faced by the existing techniques are also listed and described, which should help the researchers in enhancing the effectiveness of their future works. The research papers are analyzed for different techniques with respect to software tools, datasets used, publication year, classification techniques, and the performance metrics. It can be concluded from the here presented survey that the most frequently used big data classification methods are based on the machine learning techniques and the apparently most commonly used dataset for big data classification is the UCI repository dataset. The most frequently used performance metrics are accuracy and execution time.
Źródło:
Control and Cybernetics; 2020, 49, 4; 447-469
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A rule based machine learning approach to the nonlinear multifingered robot gripper problem
Autorzy:
Abu-Zitar, R.
Al-Fahed Nuseirat, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/970099.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
zacisk robota
programowanie ewolucyjne
komputerowe uczenie się
robot gripper
nonlinear complementarity problem (NCP)
Evolutionary Programming (EP)
machine learning
nearest-classifier-algorithm
Opis:
In this paper, we present a novel method that utilizes the accumulation of knowledge in a rule base for solving the nonlinear frictional gripper problem for both the isotropic and orthotropic cases. The knowledge is discovered and accumulated in a rule base with the aid of a genetic based machine learning mechanism. This machine learning mechanism extracts rules for solving the problem with the help of the Evolutionary Programming [EP) algorithm. The retrievals are done using the nearest-classifier-algorithm. This approach provides online solutions for the problem, and establishes a dynamic and evolving environment that adapts with new and sudden changes on the grip specifications or on the external forces. The resulting grasping forces using the presented method are compared with grasping forces obtained using other methods, such as the Complementarity Problems. The proposed online method could update the needed grasping forces to keep firm grip if the configuration of the forces externally applied to the object is changed. Numerical examples that illustrate the proposed method are presented.
Źródło:
Control and Cybernetics; 2005, 34, 2; 553-573
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies