Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sulfate" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Sulfate permeases - phylogenetic diversity of sulfate transport
Autorzy:
Piłsyk, Sebastian
Paszewski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1040522.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
sulfate permeases
sulfate transporters
Opis:
Sulfate uptake, the first step of sulfate assimilation in all organisms, is a highly endoergic, ATP requiring process. It is under tight control at the transcriptional level and is additionally modulated by posttranslational modifications, which are not yet fully characterized. Sulfate anion is taken up into the cell by specific transporters, named sulfate permeases, located in the cell membrane. Bacterial sulfate permeases differ significantly from the eukaryotic transporters in their evolutionary origins, structure and subunit composition. This review focuses on the diversity and regulation of sulfate permeases in various groups of organisms.
Źródło:
Acta Biochimica Polonica; 2009, 56, 3; 375-384
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dermatan sulfate remodeling associated with advanced Dupuytrens contracture
Autorzy:
Koźma, Ewa
Głowacki, Andrzej
Olczyk, Krystyna
Ciecierska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/1040877.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
epimerization
fibrous cords
dermatan sulfate
Dupuytren's contracture
Opis:
Dermatan sulfate (DS) widespread as a component of extracellular matrix proteoglycans, is characterized by great bio-reactivity and remarkable structural heterogeneity due to distinct degrees of sulfation and glucuronosyl epimerization and different polymerization degrees. However, DS metabolism under various biological conditions is poorly known. Dupuytren's contracture is a benign fibromatosis leading to complex remodeling of the palmar fascia structure and properties. However, it remains unclear whether the disease affects the structure of DS, which is the major tissue glycosaminoglycan. Thus the aim of the study was to examine the structure of the total DS in Dupuytren's fascia. DS chains were extracted from 5 samples of normal fascia and 7 specimens of Dupuytren's tissue by papain digestion followed by fractionation with cetylpyridinium chloride. Then, DS structure analysis was performed comprising the evaluation of its molecular masses and sensitivity to hyaluronidase and chondroitinase B. Dupuytren's contracture is associated with significant remodeling of DS chain structure revealed by (1) a distinct profile of chain molecular masses characterized by the appearance of long size components as well as the increase in the content of small size chains; (2) a different glucuronosyl epimerization pattern connected with the enhanced content of glucuronate disaccharide blocks; (3) chain oversulfation. These structural alterations in total DS may modify the GAG interactions especially affecting collagen fibrillogenesis and growth factor availability. Thus, Dupuytren's contracture associated DS remodeling may promote the phenomena typical for advanced disease: apoptosis and reduction in cell number as well as the appearance of dense pseudotendinous collagen matrix.
Źródło:
Acta Biochimica Polonica; 2007, 54, 4; 821-830
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria
Autorzy:
Kushkevych, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/1039142.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
sulfate-reducing bacteria
phosphotransacetylase
kinetic analysis
inflammatory bowel diseases
Opis:
Phosphotransacetylase activity and the kinetic properties of the enzyme from intestinal sulfate-reducing bacteria Desulfovibrio piger and Desulfomicrobium sp. has never been well-characterized and has not been studied yet. In this paper, the specific activity of phosphotransacetylase and the kinetic properties of the enzyme in cell-free extracts of both D. piger Vib-7 and Desulfomicrobium sp. Rod-9 intestinal bacterial strains were presented at the first time. The microbiological, biochemical, biophysical and statistical methods in this work were used. The optimal temperature and pH for enzyme reaction was determined. Analysis of the kinetic properties of the studied enzyme was carried out. Initial (instantaneous) reaction velocity (V0), maximum amount of the product of reaction (Pmax), the reaction time (half saturation period, τ) and maximum velocity of the phosphotransacetylase reaction (Vmax) were defined. Michaelis constants (Km) of the enzyme reaction (3.36 ± 0.35 mM for D. piger Vib-7, 5.97 ± 0.62 mM for Desulfomicrobium sp. Rod-9) were calculated. The studies of the phosphotransacetylase in the process of dissimilatory sulfate reduction and kinetic properties of this enzyme in intestinal sulfate-reducing bacteria, their production of acetate in detail can be perspective for clarification of their etiological role in the development of the humans and animals bowel diseases. These studies might help in predicting the development of diseases of the gastrointestinal tract, by providing further details on the etiology of bowel diseases which are very important for the clinical diagnosis of these disease types.
Źródło:
Acta Biochimica Polonica; 2015, 62, 1; 103-108
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recent advances in understanding plant response to sulfur-deficiency stress
Autorzy:
Lewandowska, Małgorzata
Sirko, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/1040699.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
sulfate assimilation
cysteine
nutrient availability
stress response
glutathione
sulfur metabolism
Opis:
Sulfur is an essential macronutrient for all living organisms. Plants are able to assimilate inorganic sulfur and incorporate it into organic compounds, while animals rely entirely on organic sources of sulfur. In the last decades sulfate availability in soils has become the major limiting factor for plant production in many countries due to significant reduction of anthropogenic sulfur emission forced by introducing stringent environmental legislation. The sulfur flux after transferring plants from optimal conditions to sulfur deficiency is regulated on multiple levels including transcription, translation and activity of enzymes needed for sulfate assimilation and synthesis of sulfur-containing metabolites. Most of these regulatory steps are not yet fully characterized. Plant responses to sulfur limitation are complex and can be divided into phases depending on the degree of sulfur shortage. The initial responses are limited to adaptations within sulfur metabolic pathway, while multiple metabolic pathways and developmental process are affected when sulfur shortage becomes more severe. The major aim of this work is a comprehensive review of recent progress in understanding the regulation of plant adaptations to sulfur deficit.
Źródło:
Acta Biochimica Polonica; 2008, 55, 3; 457-471
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies