Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "short term prediction" wg kryterium: Temat


Wyświetlanie 1-13 z 13
Tytuł:
Determination of the inland units models parameters for short-term prediction
Autorzy:
Bilewski, M.
Gucma, L.
Puszcz, A.
Powiązania:
https://bibliotekanauki.pl/articles/360014.pdf
Data publikacji:
2013
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
short term prediction
inland units
manoeuvring
hydrodynamics
navigation simulator
Opis:
Short-term prediction is a tool that helps to manoeuvre inland units, allows assessing the effect of the planned manoeuvre and reduces the probability of collision. Model of ships hydrodynamics is required to perform this task. In the paper simple to implement solution based on a Nomoto model is proposed. Method of determi ning the parameters of the model was presented. Researches were carried out with use of INSim Inland Navigation Simulator.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2013, 36 (108) z. 1; 32-37
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Short term prediction of stock index changes based on linear classification
Krótkoterminowe prognozowanie indeksów giełdowych w oparciu o klasyfikator liniowy
Autorzy:
Krawczuk, J.
Bobrowski, L.
Powiązania:
https://bibliotekanauki.pl/articles/404168.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
prognozowanie krótkoterminowe
zmiany indeksu giełdowego
klasyfikator liniowy
short term prediction
stock index changes
linear classifier
Opis:
This article describe the linear classifier based on convex and piecewise-linear function (CPL) and it application to market prediction. In an experiment we use CPL linear classifier to predict direction of one day change in stock index price. We use classification approach to predict only direction of change (grow or decline) of the index, not it quantity as in regression approach. Total number of instruments used in experiment including currencies is 42. Prediction of one index is based on historical prices of all 42 indexes. Using 7 historical values for each index it produce 294 attributes. Such high dimensional feature space was reduced by feature selection method - relaxed linear separability (RLS). Details of this methodology are also presented. Features was selected and model was build on training data. Test data (holdout data) was used for checking model accuracy. Model in average correctly classify (predict) 51.9 per cent direction of daily index changes.
W artykule opisano klasyfikator liniowy oparty o wypukłe i odcinkowo-liniowe funkcje kary (CPL) i jego zastosowanie w prognozowaniu giełdy. W przeprowadzonym eksperymencie klasyfikator liniowy CPL został użyty do prognozy kierunku jednodniowej zmiany indeksów giełdowych. W zastosowanym podejściu klasyfikacyjnym prognozowano jedynie kierunek zmian (wzrost lub spadek), a nie dokładną wartość indeksu (podejście regresyjne). W eksperymencie użyto 42 instrumentów finansowych, w tym m.in. kursów walut. Jednodniowa prognoza wybranego instrumentu budowana jest w oparciu o wartości historyczne wszystkich 42 instrumentów. Używając 7 danych historycznych dla każdego instrumentu, uzyskano w sumie 294 atrybuty. Tak wielowymiarowa przestrzeń została zredukowana metodą selekcji cech opartą o relaksację liniowej separowalności. Metoda ta została opisana szczegółowo. Selekcja cech i budowa modelu w wybranej podprzestrzeni została przeprowadzona na zbiorze uczącym (treningowym). Natomiast ocena modelu została przeprowadzona na zbiorze testowym. Otrzymany wynik to średnio 51.9 procent prawidłowo sklasyfikowanych (prognozowanych) dziennych zmian indeksów giełdowych.
Źródło:
Symulacja w Badaniach i Rozwoju; 2010, 1, 4; 363-373
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Krótkoterminowe prognozowanie zapotrzebowania na energię elektryczną odbiorców wiejskich przy wykorzystaniu modeli Mamdaniego
Short-term prediction of electric energy demand by rural consumers with the use of Mamdani models
Autorzy:
Trojanowska, M.
Małopolski, J.
Powiązania:
https://bibliotekanauki.pl/articles/239850.pdf
Data publikacji:
2007
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
energia elektryczna
prognozowanie krótkoterminowe
modele rozmyte
electric energy demand
rural customers
short-term prediction
fuzzy models
Opis:
W pracy zbudowano modele z wnioskowaniem typu Mamdani do godzinowego prognozowania zapotrzebowania na energię elektryczną odbiorców wiejskich, jako charakterystycznej grupy użytkowników energii. Ze względu na charakter zmienności obciążeń opracowano odrębne modele dla typowych dni tygodnia. Przeprowadzona analiza wykazała przydatność tych modeli do krótkoterminowej predykcji i ich konkurencyjność w stosunku do modeli neuronowych.
The models with Mamdani type of concluding were developed in order to predict the hourly demand of electric energy supplies to the rural customers as a characteristic group of electricity users. Because of the character of demands' variability, separate models for typical week-days were designed. The analysis that was carried out, showed the usefulness of these models to make the short-term predictions and their competitiveness in relation to the neural models.
Źródło:
Problemy Inżynierii Rolniczej; 2007, R. 15, nr 3, 3; 35-42
1231-0093
Pojawia się w:
Problemy Inżynierii Rolniczej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of LSTM model with multi-step ahead strategies for a short-term traffic flow prediction
Autorzy:
Doğan, Erdem
Powiązania:
https://bibliotekanauki.pl/articles/2134868.pdf
Data publikacji:
2021
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
traffic flow
LSTM
short-term prediction
multi-step ahead strategies
przepływ ruchu
prognozowanie krótkoterminowe
strategie wieloetapowego wyprzedzania
Opis:
In this study, the effect of direct and recursive multi-step forecasting strategies on the short-term traffic flow forecast performance of the Long Short-Term Memory (LSTM) model is investigated. To increase the reliability of the results, analyses are carried out with various traffic flow data sets. In addition, databases are clustered using the k-means++ algorithm to reduce the number of experiments. Analyses are performed for different time periods. Thus, the contribution of strategies to LSTM was examined in detail. The results of the recursive based strategy performances are not satisfactory. However, different versions of the direct strategy performed better at different time periods. This research makes an important contribution to clarifying the compatibility of LSTM and forecasting strategies. Thus, more efficient traffic flow prediction models will be developed and systems such as Intelligent Transportation System (ITS) will work more efficiently. A practical implication for researchers that forecasting strategies should be selected based on time periods.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2021, 111; 15--31
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod ekonometrycznych na konkurencyjnych rynkach energii elektrycznej
Econometric analysis in competitive electricity markets
Autorzy:
Kwas, Marek
Powiązania:
https://bibliotekanauki.pl/articles/452953.pdf
Data publikacji:
2010
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
konkurencyjne rynki energii
rynek bilansujący
prognoza krótkoterminowa
modele SARIMA
zarządzanie ryzykiem
competitive electricity markets
balancing market
short term prediction
SARIMA
risk management
Opis:
W pracy przedstawione są możliwości zastosowania metod ekonometrycznych do prognozowania cen na konkurencyjnym rynku energii elektrycznej w Polsce. Uwolnienie rynku sprawiło, że hurtowe ceny energii są w dużej części kształtowane przez grę rynkową, a oszacowanie ryzyka pozycji kontraktowej i zarządzanie nim wymaga sporządzania prognoz cen dla każdej godziny. Użyte metody muszą zapewnić nie tylko dokładność prognozy ale również wyznaczyć ją w rozsądnym czasie. W celu ilustracji i umotywowania tematyki badawczej, praca zawiera obszerne omówienie współczesnych rynków energii elektrycznej, w tym polskiego.
The paper presents an application of econometric methods to modeling and predicting energy prices on competitive electricity markets. Since the beginning of market liberalization, electricity prices are no longer settled only by bilateral contracts but also driven by market forces of supply and demand. Price prediction became important to assess and manage market risk. This requires efficient algorithms for computing detailed hourly forecasts. In order to motivate and illustrate the subject we discuss the properties of competitive electricity markets, emphasizing Polish market specifics.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2010, 11, 2; 181-190
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ultra-short-term wind power prediction based on copula function and bivariate EMD decomposition algorithm
Autorzy:
Liu, Haiqing
Lin, Weijian
Li, Yuancheng
Powiązania:
https://bibliotekanauki.pl/articles/140702.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
bivariate EMD decomposition
copula function
GRU network
meteorological factor
ultra-short-term wind power prediction
Opis:
Against the background of increasing installed capacity of wind power in the power generation system, high-precision ultra-short-term wind power prediction is significant for safe and reliable operation of the power generation system. We present a method for ultra-short-term wind power prediction based on a copula function, bivariate empirical mode decomposition (BEMD) algorithm and gated recurrent unit (GRU) neural network. First we use the copula function to analyze the nonlinear correlation between wind power and external factors to extract the key factors influencing wind power generation. Then the joint data composed of the key factors and wind power are decomposed into a series of stationary subsequence data by a BEMD algorithm which can decompose the bivariate data jointly. Finally, the prediction model based on a GRU network uses the decomposed data as the input to predict the power output in the next four hours. The experimental results show that the proposed method can effectively improve the accuracy of ultra-short-term wind power prediction.
Źródło:
Archives of Electrical Engineering; 2020, 69, 2; 271-286
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Motion prediction of moving objects in a robot navigational environment using fuzzy-based decision tree approach
Autorzy:
Rajpurohit, V. S.
Manohara Pai, M. M.
Powiązania:
https://bibliotekanauki.pl/articles/384387.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
short term motion prediction
fuzzy rule base
rule base optimization
fuzzy predictor algorithm
directional space approach
decision tree approach
Opis:
In a dynamic robot navigation system the robot has to avoid both static and dynamic objects on its way to destination. Predicting the next instance position of a moving object in a navigational environment is a critical issue as it involves uncertainty. This paper proposes a fuzzy rulebased motion prediction algorithm for predicting the next instance position of moving human motion patterns. Fuzzy rule base has been optimized by directional space approach and decision tree approach. The prediction algorithm is tested for real-life bench- marked human motion data sets and compared with existing motion prediction techniques. Results of the study indicate that the performance of the predictor is comparable to the existing prediction methods.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2010, 4, 4; 11-18
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Econometric modelling of compound cyclicality of using telecommunication services
Autorzy:
Kaczmarczyk, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1195955.pdf
Data publikacji:
2021
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
cyclical components
Decision Support System
Prediction System
short-term forecasting
Opis:
The aim of this study was to test the effectiveness of an econometric model with dichotomous (binary) explanatory variables in the approximation and prediction of different kinds of cyclicality (annual, monthly, weekly, and daily) of demand for telephone services. The analyses were conducted with the use of data provided by the selected telecommunication network operator. The data included hourly combined demand for specified telephone services (in seconds) of outgoing calls within the framework of the particular subscriber group (business or individual), the given day, the particular month, and the specific category of connection. All kinds of the cyclicality were confirmed in models with 70 explanatory variables (i.e. in models without holidays). The inclusion of the variables set denoting specific holidays improved goodness of the models fit to the data. The econometric modelling of cyclical components and the forecasting of it with the use of dichotomous variables was effective.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2021, 25, 2; 27-45
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An intelligent approach to short-term wind power prediction using deep neural networks
Autorzy:
Niksa-Rynkiewicz, Tacjana
Stomma, Piotr
Witkowska, Anna
Rutkowska, Danuta
Słowik, Adam
Cpałka, Krzysztof
Jaworek-Korjakowska, Joanna
Kolendo, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/23944826.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
renewable energy
wind energy
wind power
wind turbine
short-term wind power prediction
deep learning
convolutional neural networks
gated recurrent unit
hierarchical multilayer perceptron
deep neural networks
Opis:
In this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent Unit), and H-MLP (Hierarchical Multilayer Perceptron). The DNN architectures are part of the Deep Learning Prediction (DLP) framework that is applied in the Deep Learning Power Prediction System (DLPPS). The system is trained based on data that comes from a real wind farm. This is significant because the prediction results strongly depend on weather conditions in specific locations. The results obtained from the proposed system, for the real data, are presented and compared. The best result has been achieved for the GRU network. The key advantage of the system is a high effectiveness prediction using a minimal subset of parameters. The prediction of wind power in wind farms is very important as wind power capacity has shown a rapid increase, and has become a promising source of renewable energies.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 3; 197--210
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interval Prediction of Remaining Useful Life based on Convolutional Auto-Encode and Lower Upper Bound Estimation
Autorzy:
Lyu, Yi
Zhang, Qichen
Chen, Aiguo
Wen, Zhenfei
Powiązania:
https://bibliotekanauki.pl/articles/24200839.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
remaining useful life
lower upper bound estimation
Long Short-Term Memory
prediction interval
Opis:
Deep learning is widely used in remaining useful life (RUL) prediction because it does not require prior knowledge and has strong nonlinear fitting ability. However, most of the existing prediction methods are point prediction. In practical engineering applications, confidence interval of RUL prediction is more important for maintenance strategies. This paper proposes an interval prediction model based on Long Short-Term Memory (LSTM) and lower upper bound estimation (LUBE) for RUL prediction. First, convolutional auto-encode network is used to encode the multi-dimensional sensor data into one-dimensional features, which can well represent the main degradation trend. Then, the features are input into the prediction framework composed of LSTM and LUBE for RUL interval prediction, which effectively solves the defect that the traditional LUBE network cannot analyze the internal time dependence of time series. In the experiment section, a case study is conducted using the turbofan engine data set CMAPSS, and the advantage is validated by carrying out a comparison with other methods.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 165811
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel method of health indicator construction and remaining useful life prediction based on deep learning
Autorzy:
Zhan, Xianbiao
Liu, Zixuan
Yan, Hao
Wu, Zhenghao
Guo, Chiming
Jia, Xisheng
Powiązania:
https://bibliotekanauki.pl/articles/27312791.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
stacked sparse autoencoder
health indicator
long short-term memory network
remaining useful life prediction
Opis:
The construction of health indicators (HI) for traditional deep learning requires human training labels and poor interpretability. This paper proposes an HI construction method based on Stacked Sparse Autoencoder (SSAE) and combines SSAE with Long short-term memory (LSTM) network to predict the remaining useful life (RUL). Extracting features from a single domain may result in insufficient feature extraction and cannot comprehensively reflect the degradation status information of mechanical equipment. In order to solve the problem, this article extracts features from time domain, frequency domain, and time-frequency domain to construct a comprehensive original feature set. Based on monotonicity, trendiness, and robustness, the most sensitive features from the original feature set are selected and put into the SSAE network to construct HI for state partitioning, and then LSTM is used for RUL prediction. By comparing with the existing methods, it is proved that the prediction effect of the proposed method in this paper is satisfied.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 171374
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic rating method of traction network based on wind speed prediction
Autorzy:
Su, Zhaoux
Tian, Mingxing
Sun, Lijun
Zhang, Ruopeng
Powiązania:
https://bibliotekanauki.pl/articles/2086724.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dynamic thermal rating
IEEE-738
short-term emergency dispatch
time series model
traction power supply
wind speed prediction
Opis:
The operating temperature of the transmission line in the traction network is affected by geographical and climatic factors, especially the wind speed. To make better use of the thermal stability transmission capacity of the traction power supply system in improving the short-term emergency transmission capacity, the dynamic rating technology is introduced into the traction power supply system. According to the time-varying characteristics of the actual wind speed, a dynamic rating method of the traction network based on wind speed prediction is proposed and constructed. Based on the time series model in predicting the wind speed series along the corridor of the traction network, the temperature curve of each transmission line under different currents is calculated by combining it with the heat balance equation of an IEEE-738 capacity expansion model, thus the relationship between the peak operating temperature and current of each transmission line in the prediction period is obtained. According to the current distribution coefficient, the capacity increase limit of the traction network is determined. The example shows that the proposed dynamic rating method based on wind speed prediction is an effective method to predict the short-term safe capacity increase limit of the traction network, which can increase the comprehensive capacity of the traction network by about 45% in the next six hours, and the capacity increase effect is obvious, which can provide reference and technical support for short-term emergency dispatching of traction power supply dispatching centres.
Źródło:
Archives of Electrical Engineering; 2022, 71, 2; 379--395
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis and comparison of long short-term memory networks short-term traffic prediction performance
Autorzy:
Dogan, Erdem
Powiązania:
https://bibliotekanauki.pl/articles/2091136.pdf
Data publikacji:
2020
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
deep learning
traffic flow
short-term
prediction
LSTM
nonlinear autoregressive
training set size
uczenie głębokie
ruch uliczny
krótki termin
prognoza
autoregresja nieliniowa
Opis:
Long short-term memory networks (LSTM) produces promising results in the prediction of traffic flows. However, LSTM needs large numbers of data to produce satisfactory results. Therefore, the effect of LSTM training set size on performance and optimum training set size for short-term traffic flow prediction problems were investigated in this study. To achieve this, the numbers of data in the training set was set between 480 and 2800, and the prediction performance of the LSTMs trained using these adjusted training sets was measured. In addition, LSTM prediction results were compared with nonlinear autoregressive neural networks (NAR) trained using the same training sets. Consequently, it was seen that the increase in LSTM's training cluster size increased performance to a certain point. However, after this point, the performance decreased. Three main results emerged in this study: First, the optimum training set size for LSTM significantly improves the prediction performance of the model. Second, LSTM makes short-term traffic forecasting better than NAR. Third, LSTM predictions fluctuate less than the NAR model following instant traffic flow changes.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2020, 107; 19--32
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies