Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Analysis and comparison of long short-term memory networks short-term traffic prediction performance

Tytuł:
Analysis and comparison of long short-term memory networks short-term traffic prediction performance
Autorzy:
Dogan, Erdem
Powiązania:
https://bibliotekanauki.pl/articles/2091136.pdf
Data publikacji:
2020
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
deep learning
traffic flow
short-term
prediction
LSTM
nonlinear autoregressive
training set size
uczenie głębokie
ruch uliczny
krótki termin
prognoza
autoregresja nieliniowa
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2020, 107; 19--32
0209-3324
2450-1549
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Long short-term memory networks (LSTM) produces promising results in the prediction of traffic flows. However, LSTM needs large numbers of data to produce satisfactory results. Therefore, the effect of LSTM training set size on performance and optimum training set size for short-term traffic flow prediction problems were investigated in this study. To achieve this, the numbers of data in the training set was set between 480 and 2800, and the prediction performance of the LSTMs trained using these adjusted training sets was measured. In addition, LSTM prediction results were compared with nonlinear autoregressive neural networks (NAR) trained using the same training sets. Consequently, it was seen that the increase in LSTM's training cluster size increased performance to a certain point. However, after this point, the performance decreased. Three main results emerged in this study: First, the optimum training set size for LSTM significantly improves the prediction performance of the model. Second, LSTM makes short-term traffic forecasting better than NAR. Third, LSTM predictions fluctuate less than the NAR model following instant traffic flow changes.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies