Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "równanie różniczkowe zwyczajne" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Modern Taylor series method in numerical integration
Moderní metoda Taylorovy řady v numerické integraci
Autorzy:
Chaloupka, J.
Necasová, G.
Veigend, P.
Kunovský, J.
Šátek, V.
Powiązania:
https://bibliotekanauki.pl/articles/113526.pdf
Data publikacji:
2017
Wydawca:
STE GROUP
Tematy:
Taylor series
ordinary differential equations
technical initial value problems
szereg Taylora
równanie różniczkowe zwyczajne
Opis:
The paper deals with extremely exact, stable, and fast numerical solutions of systems of differential equations. It also involves solutions of problems that can be reduced to solving a system of differential equations. The approach is based on an original mathematical method, which uses the Taylor series method for solving differential equations in a non-traditional way. Even though this method is not much preferred in the literature, experimental calculations have verified that the accuracy and stability of the Taylor series method exceed the currently used algorithms for numerically solving differential equations. The Modern Taylor Series Method (MTSM) is based on a recurrent calculation of the Taylor series terms for each time interval. Thus, the complicated calculation of higher order derivatives (much criticised in the literature) need not be performed but rather the value of each Taylor series term is numerically calculated. An important part of the method is an automatic integration order setting, i.e. using as many Taylor series terms as the defined accuracy requires. The aim of our research is to propose the extremely exact, stable, and fast numerical solver for modelling technical initial value problems that offers wide applications in many engineering areas including modelling of electrical circuits, mechanics of rigid bodies, control loop feedback (controllers), etc.
Clánek se zabývá presným, stabilním a rychlým rešením soustav diferenciálních rovnic. Soustavou diferenciálních rovnic lze reprezentovat velké množství reálných problému. Numerické rešení je založeno na unikátní numerické metode, která netradicne využívá Taylorovu radu. I presto, že tato metoda není v literature príliš preferována, experimentální výpocty potvrdily, že presnost a stabilita této metody presahuje aktuálne používané numerické algoritmy pro numerické rešení diferenciálních rovnic. Moderní metoda Taylorovy rady je založena na rekurentním výpoctu clenu Taylorovy rady v každém casovém intervalu. Derivace vyšších rádu nejsou pro výpocet prímo využity, derivace jsou zahrnuty do clenu Taylorovy rady, které se pocítají rekurentne numericky. Duležitou vlastností metody je automatická volba rádu metody v závislosti na velikosti integracního kroku, tzn. je využito tolik clenu Taylorovy rady, kolik vyžaduje zadaná presnost výpoctu. Cílem výzkumu je navrhnout velmi presný, stabilní a rychlý nástroj pro modelování technických pocátecních problému využitých v praxi pri modelování elektrických obvodu, mechaniky tuhých teles, problematiky zpetnovazebního rízení a další.
Źródło:
Systemy Wspomagania w Inżynierii Produkcji; 2017, 6, 4; 263-273
2391-9361
Pojawia się w:
Systemy Wspomagania w Inżynierii Produkcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The fourth-order ordinary differential equation with the fractional initial/boundary conditions
Autorzy:
Siedlecki, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/122929.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional calculus
ordinary differential equation
analytical solution
rachunek ułamkowy
równanie różniczkowe zwyczajne
rozwiązanie analityczne
warunek brzegowy
Opis:
The initial/boundary value problem for the fourth-order homogeneous ordinary differential equation with constant coefficients is considered. In this paper, the particular solutions an ordinary differential equation with respect to the set of boundary conditions are studied. At least one of the boundary conditions is described by a fractional derivative. Finally, a few illustrative examples of particular solutions to the considered problem are shown.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 79-87
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The fourth-order ordinary differential equation with the fractional initial/boundary conditions
Autorzy:
Siedlecki, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/1839799.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional calculus
ordinary differential equation
analytical solution
rachunek ułamkowy
równanie różniczkowe zwyczajne
rozwiązanie analityczne
warunek brzegowy
Opis:
The initial/boundary value problem for the fourth-order homogeneous ordinary differential equation with constant coefficients is considered. In this paper, the particular solutions an ordinary differential equation with respect to the set of boundary conditions are studied. At least one of the boundary conditions is described by a fractional derivative. Finally, a few illustrative examples of particular solutions to the considered problem are shown.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 79-87
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator
Autorzy:
Kumar, Prem
Qureshi, Sania
Powiązania:
https://bibliotekanauki.pl/articles/122736.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformacja Laplace'a
całka Riemann-Liouville
Opis:
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 57-66
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using Shehu integral transform to solve fractional order Caputo type initial value problems
Autorzy:
Qureshi, Sania
Kumar, Prem
Powiązania:
https://bibliotekanauki.pl/articles/122809.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformata Laplace'a
całka Riemann-Liouville
Opis:
In the present research analysis, linear fractional order ordinary differential equations with some defined condition (s) have been solved under the Caputo differential operator having order α > 0 via the Shehu integral transform technique. In this regard, we have presented the proof of finding the Shehu transform for a classical nth order integral of a piecewise continuous with an exponential nt h order function which leads towards devising a theorem to yield exact analytical solutions of the problems under investigation. Varying fractional types of problems are solved whose exact solutions can be compared with solutions obtained through existing transformation techniques including Laplace and Natural transforms.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 2; 75-83
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator
Autorzy:
Kumar, Prem
Qureshi, Sania
Powiązania:
https://bibliotekanauki.pl/articles/1839810.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformacja Laplace'a
całka Riemann-Liouville
Opis:
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 57-66
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cubic nonlinear fractional Schrödinger equation with conformable derivative and its new travelling wave solutions
Autorzy:
Gündoğdu, Hami
Gözükızıl, Ömer Faruk
Powiązania:
https://bibliotekanauki.pl/articles/1839843.pdf
Data publikacji:
2021
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
cubic nonlinear fractional Schrödinger equation
travelling wave solutions
kink solution
soliton solution
równanie różniczkowe zwyczajne
roztwór solitonu
równanie Schrödingera
fale biegnące
Opis:
In the present paper, the fractional-order cubic nonlinear Schrödinger equation is considered. The Schrödinger equation with time and space fractional derivative is studied at the same time. Different types of travelling wave solutions including the kink solution, soliton solution, periodic solution, and singular solution for the mentioned equation are obtained by using the Jacobi elliptic functions expansion method. It is shown that the solutions turn into the exact solutions when the fractional orders go to 1. This method can be relied on gaining the solutions to time or space fractional order partial differential equations as well as ordinary ones. Throughout this work, the fractional derivative is given in a conformable sense.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2021, 20, 1; 29-41
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A mathematical model for fluid-glucose-albumin transport in peritoneal dialysis
Autorzy:
Cherniha, R.
Stachowska-Piętka, J.
Waniewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/907934.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fluid transport
transport in peritoneal dialysis
nonlinear partial differential equations
ordinary differential equation
steady-state solution
transport płynu
dializa otrzewnowa
nieliniowe równanie różniczkowe
równanie różniczkowe zwyczajne
Opis:
A mathematical model for fluid and solute transport in peritoneal dialysis is constructed. The model is based on a three-component nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with the relevant boundary and initial conditions. Our aim is to model ultrafiltration of water combined with inflow of glucose to the tissue and removal of albumin from the body during dialysis, by finding the spatial distributions of glucose and albumin concentrations as well as hydrostatic pressure. The model is developed in one spatial dimension approximation, and a governing equation for each of the variables is derived from physical principles. Under some assumptions the model can be simplified to obtain exact formulae for spatially non-uniform steady-state solutions. As a result, the exact formulae for fluid fluxes from blood to the tissue and across the tissue are constructed, together with two linear autonomous ODEs for glucose and albumin concentrations in the tissue. The obtained analytical results are checked for their applicability for the description of fluid-glucose-albumin transport during peritoneal dialysis.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 4; 837-851
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework
Autorzy:
Chaturantabut, Saifon
Powiązania:
https://bibliotekanauki.pl/articles/1838159.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
model order reduction
ordinary differential equation
partial differential equation
proper orthogonal decomposition
discrete empirical interpolation method
redukcja rzędu modelu
równanie różniczkowe zwyczajne
równanie różniczkowe cząstkowe
rozkład ortogonalny
Opis:
This work develops a technique for constructing a reduced-order system that not only has low computational complexity, but also maintains the stability of the original nonlinear dynamical system. The proposed framework is designed to preserve the contractivity of the vector field in the original system, which can further guarantee stability preservation, as well as provide an error bound for the approximated equilibrium solution of the resulting reduced system. This technique employs a low-dimensional basis from proper orthogonal decomposition to optimally capture the dominant dynamics of the original system, and modifies the discrete empirical interpolation method by enforcing certain structure for the nonlinear approximation. The efficiency and accuracy of the proposed method are illustrated through numerical tests on a nonlinear reaction diffusion problem.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 4; 615-628
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Boundary integral solution for a class of fourth-order two-point boundary value problems
Autorzy:
Al-Gahtani, H. J.
Powiązania:
https://bibliotekanauki.pl/articles/122949.pdf
Data publikacji:
2016
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
boundary integral method
fourth-order differential equation
nonlinear ordinary differential equations
nieliniowe równania różniczkowe zwyczajne
równanie różniczkowe czwartego rzędu
Opis:
In this paper, a boundary integral method is proposed for the solution of a class of fourth-order two-boundary value problems described by the equation yiv+P(x, y, y, y’’, y’’’) = 0, x ∈ ( 0,L), where P is a polynomial function of its arguments. The differential equation is cast in an integral form and the weighted residual technique is used to generate the corresponding boundary integral equations. The boundary integral equations are then, solved by expressing the dependent variable, y, in terms of a power series. The proposed method is tested through four examples to show the applicability of the method to solve a wide range of fourth-order differential equations including the nonlinear ones.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2016, 15, 3; 5-13
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies