- Tytuł:
- Dynamical systems as the main instrument for the constructions of new quadratic families and their usage in cryptography
- Autorzy:
-
Ustimenko, V.
Wroblewska, A. - Powiązania:
- https://bibliotekanauki.pl/articles/106218.pdf
- Data publikacji:
- 2012
- Wydawca:
- Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
- Tematy:
-
discrete logarithm
cryptographic algorithm
cryptography
public key cryptography - Opis:
- Let K be a finite commutative ring and f = f(n) a bijective polynomial map f(n) of the Cartesian power K^n onto itself of a small degree c and of a large order. Let f^y be a multiple composition of f with itself in the group of all polynomial automorphisms, of free module K^n. The discrete logarithm problem with the pseudorandom base f(n) (solvef^y = b for y) is a hard task if n is sufficiently large. We will use families of algebraic graphs defined over K and corresponding dynamical systems for the explicit constructions of such maps f(n) of a large order with c = 2 such that all nonidentical powers f^y are quadratic polynomial maps. The above mentioned result is used in the cryptographical algorithms based on the maps f(n) – in the symbolic key exchange protocols and public keys algorithms.
- Źródło:
-
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2012, 12, 3; 65-74
1732-1360
2083-3628 - Pojawia się w:
- Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
- Dostawca treści:
- Biblioteka Nauki