Since the appearance of public-key cryptography in Diffie-Hellman seminal paper, many schemes have been proposed, but many have been broken. Indeed, for many people, the simple fact that a cryptographic algorithm withstands cryptanalytic attacks for several years is considered as a kind of validation. But some schemes took a long time before being widely studied, and maybe thereafter being broken. A much more convincing line of research has tried to provide "provable" security for cryptographic protocols, in a complexity theory sense: if one can break the cryptographic protocol, one can efficiently solve the underlying problem. Unfortunately, very few practical schemes can be proven in this so-called "standard model" because such a security level rarely meets with efficiency. A convenient but recent way to achieve some kind of validation of efficient schemes has been to identify some concrete cryptographic objects with ideal random ones: hash functions are considered as behaving like random functions, in the so-called "random oracle model", block ciphers are assumed to provide perfectly independent and random permutations for each key in the "ideal cipher model", and groups are used as black-box groups in the "generic model". In this paper, we focus on practical asymmetric protocols together with their "reductionist" security proofs. We cover the two main goals that public-key cryptography is devoted to solve: authentication with digital signatures, and confidentiality with public-key encryption schemes.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00