Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "predictive inference" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A Bayesian Small Area Model with Dirichlet Processes on the Responses
Autorzy:
Yin, Jiani
Nandram, Balgobin
Powiązania:
https://bibliotekanauki.pl/articles/1058988.pdf
Data publikacji:
2020-09-04
Wydawca:
Główny Urząd Statystyczny
Tematy:
Bayesian computation
bootstrap
predictive inference
robust modeling
computational and model diagnostics
survey data
Opis:
Typically survey data have responses with gaps, outliers and ties, and the distributions of the responses might be skewed. Usually, in small area estimation, predictive inference is done using a two-stage Bayesian model with normality at both levels (responses and area means). This is the Scott-Smith (S-S) model and it may not be robust against these features. Another model that can be used to provide a more robust structure is the two-stage Dirichlet process mixture (DPM) model, which has independent normal distributions on the responses and a single Dirichlet process on the area means. However, this model does not accommodate gaps, outliers and ties in the survey data directly. Because this DPM model has a normal distribution on the responses, it is unlikely to be realized in practice, and this is the problem we tackle in this paper. Therefore, we propose a two-stage non-parametric Bayesian model with several independent Dirichlet processes at the first stage that represents the data, thereby accommodating some of the difficulties with survey data and permitting a more robust predictive inference. This model has a Gaussian (normal) distribution on the area means, and so we call it the DPG model. Therefore, the DPM model and the DPG model are essentially the opposite of each other and they are both different from the S-S model. Among the three models, the DPG model gives us the best head-start to accommodate the features of the survey data. For Bayesian predictive inference, we need to integrate two data sets, one with the responses and other with area sizes. An application on body mass index, which is integrated with census data, and a simulation study are used to compare the three models (S-S, DPM, DPG); we show that the DPG model might be preferred.
Źródło:
Statistics in Transition new series; 2020, 21, 3; 1-19
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonparametric predictive inference in reliability and risk: recent developments
Autorzy:
Coolen, F. P. A.
Powiązania:
https://bibliotekanauki.pl/articles/2069524.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
competing risks
imprecise reliability
lower probability
upper probability
nonparametric predictive inference
system reliability
unobserved or unknown failure modes
Opis:
During the last two decades, statistical methods using lower and upper probabilities have become increasingly popular. One such method is Nonparametric Predictive Inference (NPI), which makes relatively few modelling assumptions. Due to the specic nature of many reliability and risk scenarios, NPI provides attractive new solutions to many problems in these elds. This paper provides an introductory overview to this area, including examples on competing risks, system reliability and prediction of unobserved or even unknown failure modes.
Źródło:
Journal of Polish Safety and Reliability Association; 2011, 2, 1; 39--50
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Just How Conservative Is Conservative Predictive Processing?
Autorzy:
Gładziejewski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/600619.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
embodied cognition
enactivism
Free Energy Principle
inference
internalism
Predictive Processing
mental representation
Opis:
Predictive Processing (PP) framework construes perception and action (and perhaps other cognitive phenomena) as a matter of minimizing prediction error, i.e. the mismatch between the sensory input and sensory predictions generated by a hierarchically organized statistical model. There is a question of how PP fits into the debate between traditional, neurocentric and representation-heavy approaches in cognitive science and those approaches that see cognition as embodied, environmentally embedded, extended and (largely) representation-free. In the present paper, I aim to investigate and clarify the cognitivist or ‘conservative’ reading of PP. I argue that the conservative commitments of PP can be divided into three distinct categories: (1) representationalism, (2) inferentialism, and (3) internalism. I show how these commitments and their relations should be understood and argue for an interpretation of each that is both non-trivial and largely ecumenical towards the 4E literature. Conservative PP is as progressive as conservatism gets
Źródło:
Internetowy Magazyn Filozoficzny Hybris; 2017, 38 (3)
1689-4286
Pojawia się w:
Internetowy Magazyn Filozoficzny Hybris
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies