- Tytuł:
- Signed star (k, k)-domatic number of a graph
- Autorzy:
-
Sheikholeslami, S. M.
Volkmann, L. - Powiązania:
- https://bibliotekanauki.pl/articles/254927.pdf
- Data publikacji:
- 2014
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
signed star (k, k)-domatic number
signed star domatic number
signed star k-dominating function
signed star dominating function
signed star k-domination number
signed star domination number
regular graphs - Opis:
- Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function ƒ: E(G) →{−1, 1} is said to be a signed star k-dominating function on [formula] for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the property that [formula] for each e ∈ E(G) is called a signed star (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed star (k, k)-dominating family on G is the signed star (k, k)-domatic number of G, denoted by [formula]. In this paper we study properties of the signed star (k, k)-domatic number [formula]. In particular, we present bounds on [formula], and we determine the signed (k, k)-domatic number of some regular graphs. Some of our results extend these given by Atapour, Sheikholeslami, Ghameslou and Volkmann [Signed star domatic number of a graph, Discrete Appl. Math. 158 (2010), 213–218] for the signed star domatic number.
- Źródło:
-
Opuscula Mathematica; 2014, 34, 3; 609-620
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki