A spanning subgraph $F$ of a graph $G$ is called a star-cycle factor of $G$ if each component of $F$ is a star or cycle. Let $G$ be a graph and $f : V (G) → {1, 2, 3, . . .}$ be a function. Let $W = {v ∈ V (G) : f(v) = 1}$. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor $F$ with the property that (i) if a component $D$ of $F$ is a star with center $v$, then $deg_F (v) ≤ f(v)$, and (ii) if a component $D$ of $F$ is a cycle, then $V (D) ⊆ W$ if and only if $iso(G − S) ≤ Σ_{x∈S} f(x)$ for all $S ⊂ V (G)$, where $iso(G − S)$ denotes the number of isolated vertices of $G − S$. They proved this result by using circulation theory of flows and fractional factors of graphs. In this paper, we give an elementary and short proof of this theorem.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00