- Tytuł:
-
Predicting oil prices
Prognozowanie cen ropy naftowej - Autorzy:
-
Ejdys, J.
Halicka, K.
Winkowski, C. - Powiązania:
- https://bibliotekanauki.pl/articles/256449.pdf
- Data publikacji:
- 2014
- Wydawca:
- Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
- Tematy:
-
forecasting
forecast quality
price
crude oil
Holt-Winters model
artificial neural networks
prognozowanie
jakość prognozy
cena
ropa naftowa
model Holta-Wintersa
sztuczna sieć neuronowa - Opis:
-
The purpose of this article is the use of artificial intelligence methods and exponential smoothing methods to determine the short-term forecast of BRENT oil prices. Another important objective of the research is to conduct a comparative analysis of the quality of the forecasts and make recommendations concerning the constructed forecasting models. Historical data used in this study came from the London Stock Exchange and covered the period from January 2012 to April 2013. The selection of forecasting models was based on the visual decomposition of the time series. The comparative analysis of the quality of the forecasts was carried out, inter alia, on the basis of such measures as mean error (ME), mean absolute error (MAE), root of mean squared error (RMS), mean relative error (MAPE), and the relative error (APE).
Celem niniejszego artykułu jest zastosowanie metod sztucznej inteligencji oraz metod wygładzania wykładniczego do wyznaczenia krótkookresowej prognozy ceny ropy naftowej BRENT. Kolejnym istotnym celem badań jest przeprowadzenie analizy porównawczej jakości otrzymanych prognoz i dokonanie rekomendacji zbudowanych modeli prognostycznych. Dane historyczne wykorzystane w niniejszym badaniu pochodziły z giełdy London Stock Exchange i obejmowały okres od stycznia 2012 r. do kwietnia 2013 r. Wyboru modeli prognostycznych dokonano na podstawie wizualnej dekompozycji szeregu czasowego. Analiza porównawcza jakości otrzymanych prognoz została przeprowadzona między innymi na podstawie takich miar jak średni błąd (ME), średni bezwzględny błąd (MAE), pierwiastek ze średniego kwadratowego błędu (RMS), średni względny błąd (MAPE) oraz względny błąd (APE). - Źródło:
-
Problemy Eksploatacji; 2014, 1; 5-13
1232-9312 - Pojawia się w:
- Problemy Eksploatacji
- Dostawca treści:
- Biblioteka Nauki