Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "strong edge-coloring" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Upper Bounds for the Strong Chromatic Index of Halin Graphs
Autorzy:
Hu, Ziyu
Lih, Ko-Wei
Liu, Daphne Der-Fen
Powiązania:
https://bibliotekanauki.pl/articles/16647759.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
strong edge-coloring
strong chromatic index
Halin graphs
Opis:
The strong chromatic index of a graph G, denoted by χ′s(G), is the minimum number of vertex induced matchings needed to partition the edge set of G. Let T be a tree without vertices of degree 2 and have at least one vertex of degree greater than 2. We construct a Halin graph G by drawing T on the plane and then drawing a cycle C connecting all its leaves in such a way that C forms the boundary of the unbounded face. We call T the characteristic tree of G. Let G denote a Halin graph with maximum degree Δ and characteristic tree T. We prove that χ′s(G) ⩽ 2Δ + 1 when Δ ⩾ 4. In addition, we show that if Δ = 4 and G is not a wheel, then χ′s(G) ⩽ χ′s(T) + 2. A similar result for Δ = 3 was established by Lih and Liu [21].
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 5-26
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Upper Bounds for the Strong Chromatic Index of Halin Graphs
Autorzy:
Hu, Ziyu
Lih, Ko-Wei
Liu, Daphne Der-Fen
Powiązania:
https://bibliotekanauki.pl/articles/31342445.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
strong edge-coloring
strong chromatic index
Halin graphs
Opis:
The strong chromatic index of a graph $G$, denoted by $ \chi_s^′ (G) $, is the minimum number of vertex induced matchings needed to partition the edge set of $G$. Let $T$ be a tree without vertices of degree 2 and have at least one vertex of degree greater than 2. We construct a Halin graph $G$ by drawing $T$ on the plane and then drawing a cycle $C$ connecting all its leaves in such a way that $C$ forms the boundary of the unbounded face. We call $T$ the characteristic tree of $G$. Let $G$ denote a Halin graph with maximum degree $ \Delta $ and characteristic tree $T$. We prove that $ \chi_s^′ (G) \le 2 \Delta + 1 $ when $ \Delta \ge 4 $. In addition, we show that if $ \Delta = 4 $ and $G$ is not a wheel, then $ \chi_s^′ (G) \le \chi_s^′ (T) + 2 $. A similar result for $ \Delta = 3 $ was established by Lih and Liu [21].
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 5-26
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strong Edge-Coloring Of Planar Graphs
Autorzy:
Song, Wen-Yao
Miao, Lian-Ying
Powiązania:
https://bibliotekanauki.pl/articles/31341618.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
strong edge-coloring
strong chromatic index
planar graph
dis- charging method
Opis:
A strong edge-coloring of a graph is a proper edge-coloring where each color class induces a matching. We denote by $ \chi_s^' (G) $ the strong chromatic index of $G$ which is the smallest integer $k$ such that $G$ can be strongly edge-colored with $k$ colors. It is known that every planar graph $G$ has a strong edge-coloring with at most $ 4 \Delta (G) + 4 $ colors [R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211]. In this paper, we show that if $G$ is a planar graph with $ g \ge 5$, then $ \chi_s^' (G) \le 4 \Delta (G) − 2 $ when $ \Delta (G) \ge 6 $ and $ \chi_s^' (G) \le 19 $ when $ \Delta (G) = 5 $, where $g$ is the girth of $G$.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 845-857
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterizations of Graphs Having Large Proper Connection Numbers
Autorzy:
Lumduanhom, Chira
Laforge, Elliot
Zhang, Ping
Powiązania:
https://bibliotekanauki.pl/articles/31340917.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge coloring
proper-path coloring
strong proper-path coloring
Opis:
Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper u − v path of length d(u, v), then P is a proper u − v geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u, v of distinct vertices of G are connected by a proper u − v path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper u− v geodesic in G. The minimum number of colors required for a proper-path coloring or strong proper-path coloring of G is called the proper connection number pc(G) or strong proper connection number spc(G) of G, respectively. If G is a nontrivial connected graph of size m, then pc(G) ≤ spc(G) ≤ m and pc(G) = m or spc(G) = m if and only if G is the star of size m. In this paper, we determine all connected graphs G of size m for which pc(G) or spc(G) is m − 1,m − 2 or m − 3.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 439-453
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Three edge-coloring conjectures
Autorzy:
Schelp, Richard
Powiązania:
https://bibliotekanauki.pl/articles/743559.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-coloring
Ramsey number
vertex-distinguishing edge-coloring
strong chromatic index
balanced edge-coloring
local coloring
mean coloring
Opis:
The focus of this article is on three of the author's open conjectures. The article itself surveys results relating to the conjectures and shows where the conjectures are known to hold.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 173-182
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strong chromatic index of planar graphs with large girth
Autorzy:
Jennhwa Chang, Gerard
Montassier, Mickael
Pêche, Arnaud
Raspaud, André
Powiązania:
https://bibliotekanauki.pl/articles/30148715.pdf
Data publikacji:
2014-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graphs
edge coloring
2-distance coloring
strong edgecoloring
Opis:
Let Δ ≥ 4 be an integer. In this note, we prove that every planar graph with maximum degree Δ and girth at least 10Δ+46 is strong (2Δ−1)-edgecolorable, that is best possible (in terms of number of colors) as soon as G contains two adjacent vertices of degree Δ. This improves [6] when Δ ≥ 6.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 4; 723-733
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Precise Upper Bound for the Strong Edge Chromatic Number of Sparse Planar Graphs
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/30098005.pdf
Data publikacji:
2013-09-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graph
edge coloring
2-distance coloring
strong edgecoloring
Opis:
We prove that every planar graph with maximum degree $ \Delta $ is strong edge $ (2 \Delta − 1)$-colorable if its girth is at least $ 40 [ \frac{\Delta}{2} ] +1 $. The bound $ 2 \Delta −1 $ is reached at any graph that has two adjacent vertices of degree $ \Delta $ .
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 4; 759-770
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies