- Tytuł:
- A classification for maximal nonhamiltonian Burkard-Hammer graphs
- Autorzy:
-
Tan, Ngo
Iamjaroen, Chawalit - Powiązania:
- https://bibliotekanauki.pl/articles/743509.pdf
- Data publikacji:
- 2008
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
split graph
Burkard-Hammer condition
Burkard-Hammer graph
hamiltonian graph
maximal nonhamiltonian split graph - Opis:
- A graph G = (V,E) is called a split graph if there exists a partition V = I∪K such that the subgraphs G[I] and G[K] of G induced by I and K are empty and complete graphs, respectively. In 1980, Burkard and Hammer gave a necessary condition for a split graph G with |I| < |K| to be hamiltonian. We will call a split graph G with |I| < |K| satisfying this condition a Burkard-Hammer graph. Further, a split graph G is called a maximal nonhamiltonian split graph if G is nonhamiltonian but G+uv is hamiltonian for every uv ∉ E where u ∈ I and v ∈ K. Recently, Ngo Dac Tan and Le Xuan Hung have classified maximal nonhamiltonian Burkard-Hammer graphs G with minimum degree δ(G) ≥ |I|- 3. In this paper, we classify maximal nonhamiltonian Burkard-Hammer graphs G with |I| ≠ 6,7 and δ(G) = |I| - 4.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2008, 28, 1; 67-89
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki