Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "głębokie uczenie" wg kryterium: Temat


Tytuł:
Career track prediction using deep learning model based on discrete series of quantitative classification
Autorzy:
Hernandez, Rowell
Atienza, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1956033.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
track prediction
deep learning
education
przewidywanie torów
głębokie uczenie
edukacja
Opis:
In this paper, a career track recommender system was proposed using Deep Neural Network model. This study aims to assist guidance counselors in guiding their students in the selection of a suitable career track. It is because a lot of Junior High school students experienced track uncertainty and there are instances of shifting to another program after learning they are not suited for the chosen track or course in college. In dealing with the selection of the best student attributes that will help in the creation of the predictive model, the feature engineering technique is used to remove the irrelevant features that can affect the performance of the DNN model. The study covers 1500 students from the first to the third batch of the K-12 curriculum, and their grades from 11 subjects, sex, age, number of siblings, parent’s income, and academic strand were used as attributes to predict their academic strand in Senior High School. The efficiency and accuracy of the algorithm depend upon the correctness and quality of the collected student’s data. The result of the study shows that the DNN algorithm performs reasonably well in predicting the academic strand of students with a predic-tion accuracy of 83.11%. Also, the work of guidance counselors became more efficient in handling students’ concerns just by using the proposed system. It is concluded that the recommender system serves as a decision tool for counselors in guiding their stu-dents to determine which Senior High School track is suitable for students with the utilization of the DNN model.
Źródło:
Applied Computer Science; 2021, 17, 4; 55-74
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model Faster R-CNN uczony na syntetycznych obrazach
Faster R-CNN model learning on synthetic images
Autorzy:
Łach, Błażej
Łukasik, Edyta
Powiązania:
https://bibliotekanauki.pl/articles/1427643.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
computer vision
sztuczne obrazy
Faster R-CNN
głębokie uczenie
synthetic images
deep learning
Opis:
Uczenie maszynowe wymaga opisu danych przez człowieka. Opisywanie zbioru danych ręcznie jest bardzo czasochłonne. W artykule zbadano jak model uczył się na zdjęciach sztucznie wytworzonych, z jak najmniejszym udziałem człowieka przy opisywaniu danych. Sprawdzono jaki wpływ miało zastosowanie augmentacji i progresywnego rozmiaru zdjęcia przy treningu modelu na syntetycznym zbiorze. Model osiągnął nawet o 3,35% wyższą średnią precyzję na syntetycznym zbiorze danych przy zastosowaniu treningów z rosnącą rozdzielczością. Augmentacje poprawiły jakość detekcji na rzeczywistych zdjęciach. Wytwarzanie sztucznie danych treningowych ma duży wpływ na przyśpieszenie przygotowania treningów, ponieważ nie wymaga tak dużych nakładów ludzkich, jak klasyczne uczenie modeli z danymi opisanymi przez człowieka.
Machine learning requires a human description of the data. The manual dataset description is very time consuming. In this article was examined how the model learns from artificially created images, with the least human participation in describing the data. It was checked how the model learned on artificially produced images with augmentations and progressive image size. The model has achieve up to 3.35 higher mean average precision on syntetic dataset in the training with increasing images resolution. Augmentations improved the quality of detection on real photos. The production of artificially generated training data has a great impact on the acceleration of prepare training, because it does not require as much human resources as normal learning process.
Źródło:
Journal of Computer Sciences Institute; 2020, 17; 401-404
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning for automatic LiDAR point cloud processing
Głębokie uczenie w automatycznym przetwarzaniu chmury punktów skanowania laserowego
Autorzy:
Dominik, Wojciech
Bożyczko, Marcin
Tułacz-Maziarz, Karolina
Powiązania:
https://bibliotekanauki.pl/articles/27322929.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
deep learning
LiDAR
point cloud
classification
automation
głębokie uczenie
chmura punktów
klasyfikacja
automatyzacja
Opis:
The paper presents the method of automatic point cloud classification that has been developed by OPEGIEKA. The method is based on deep learning techniques and consists of an in- house developed algorithm of point cloud transformation to a regular array accompanied by internally designed convolutional neural network architecture. The developed workflow as well as experiences from its application during the execution of the CAPAP project are described. Results obtained on real project data as well as statistics obtained on the ISPRS 3D semantic labelling benchmark with the use of OPEGIEKA's method are presented. The achieved results place OPEGIEKA in the top 3 of the classification accuracy rating in the ISPRS benchmark. The implementation of OPEGIEKA's solution into LiDAR point clouds classification workflow allowed to reduce the amount of necessary manual work.
W artykule przedstawiono metodę automatycznej klasyfikacji chmur punktów opracowaną przez firmę OPEGIEKA. Metoda opiera się na technice głębokiego uczenia i składa się z opracowanego przez autorów algorytmu transformacji chmury punktów do regularnej macierzy, któremu towarzyszy wewnętrznie zaprojektowana architektura konwolucyjnej sieci neuronowej. W tekście opisano opracowany ciąg technologiczny uwzględniający metodykę na przykładzie doświadczenia podczas realizacji projektu CAPAP. Przedstawiono wyniki uzyskane na rzeczywistych danych projektowych oraz statystyki uzyskane na benchmarku ISPRS dotyczącego etykietowania semantycznego z wykorzystaniem metody OPEGIEKA. Osiągnięte wyniki plasują OPEGIEKA w pierwszej 3 rankingu dokładności klasyfikacji w benchmarku ISPRS. Wdrożenie rozwiązania OPEGIEKA do przepływu pracy klasyfikacji chmur punktów LiDAR pozwoliło zmniejszyć ilość niezbędnej pracy manualnej.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2021, 33; 13--22
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improvement of e-commerce recommendation systems with deep hybrid collaborative filtering with content: A case study
Wykorzystanie Hybrydowych Głębokich Sieci Neuronowych jako systemów rekomendacyjnych. Studium przypadku
Autorzy:
Wójcik, Filip
Górnik, Michał
Powiązania:
https://bibliotekanauki.pl/articles/424978.pdf
Data publikacji:
2020
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
collaborative filtering
deep learning
content model
product recommendation
filtracja kolaboratywna
głębokie uczenie
model treści
rekomendacja produktów
Opis:
This paper presents a proposition to utilize flexible neural network architecture called Deep Hybrid Collaborative Filtering with Content (DHCF) as a product recommendation engine. Its main goal is to provide better shopping suggestions for customers on the e-commerce platform. The system was tested on 2018 Amazon Reviews Dataset, using repeated cross validation and compared with other approaches: collaborative filtering (CF) and deep collaborative filtering (DCF) in terms of mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). DCF and DHCF were proved to be significantly better than the CF. DHCF proved to be better than DCF in terms of MAE and MAPE, it also scored the best on separate test data. The significance of the differences was checked by means of a Friedman test, followed by post-hoc comparisons to control p-value. The experiment shows that DHCF can outperform other approaches considered in the study, with more robust scores.
W artykule zbadano innowacyjną architekturę sieci neuronowych zwaną Głębokim Hybrydowym Systemem Filtracji Kolaboratywnej (DHCF), mającą posłużyć jako system rekomendacji konsumenckich. Jego zadaniem jest sugerowanie produktów klientom platform e-commerce. System został przetestowany na zbiorze danych 2018 Amazon Reviews, z wykorzystaniem powtórzonej walidacji krzyżowej, i porównany z dwoma innymi podejściami: filtracją kolaboratywną (CF) oraz filtracją kolaboratywną z siecią neuronową (DCF). Do porównania wykorzystano metryki błędu średniokwadratowego (MSE), średniego błędu bezwzględnego (MAE) oraz średniego procentowego błędu bezwzględnego (MAPE). DCF i DHCF uzyskały wyniki istotnie lepsze niż CF, a dodatkowo DHCF uzyskał lepsze wyniki niż DCF pod względem MAE i MAPE. Istotność różnic sprawdzano testem Friedmana z porównaniami wielokrotnymi i kontrolą poziomu istotności. Eksperyment dowodzi, że DHCF uzyskuje lepsze i stabilniejsze wyniki niż pozostałe metody.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2020, 24, 3; 37-50
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uczenie wielowarstwowych szerokich sieci neuronowych z funkcjami aktywacji typu ReLu w zadaniach klasyfikacji
Teaching multilayer wide neural networks with ReLU activation function in the classification tasks
Autorzy:
Płaczek, S.
Płaczek, A.
Powiązania:
https://bibliotekanauki.pl/articles/377248.pdf
Data publikacji:
2018
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
sieci neuronowe
algorytmy uczenia
uczenie głębokie
sieci szerokie
Opis:
W artykule przedstawiono obecnie nowy kierunek rozwoju Sztucznych Sieci Neuronowych w zadaniach aproksymacji i klasyfikacji. W praktyce stosowano sieci o jednej, maksimum dwóch warstwach ukrytych oraz funkcjach aktywacji typu sigmoid lub tanh. Funkcje te charakteryzują się małą zmiennością wartości dla większych wartości zmiennej wejściowej (występują obszary nasycenia) . Konsekwencją tego jest bardzo mała wartość pochodnej funkcji celu, która jest obliczana w algorytmie uczenia typu wstecznej propagacji błędu. W warstwach oddalonych od wyjścia sieci, algorytm operuje wartościami małymi, bliskimi zero, co powoduje, że algorytm jest bardzo wolno zbieżny. W sieciach o wielu warstwach ukrytych (10-15, a nawet więcej), stosuje się odcinkowe funkcje aktywacji pomimo ich formalno – matematycznych niedoskonałości. Stosując metody numeryczne w obliczeniu pochodnej, można ten problem rozwiązać, a tym samych poprawnie obliczyć pochodną funkcji aktywacji. Powyższe pozwala na obliczenie gradientu funkcji celu dla warstw głębokich uzyskując jednocześnie zadawalającą szybkość zbieżności.
In the article, a new way of artificial neural network development in the classification task is introduced. In the past, neural networks with two or maximum three hidden layers were used. The sigmoid or tanh activation functions were implemented as well. These functions have very interesting properties that are very useful in the learning algorithms. Unfortunately, they have a saturation area for the small and big argument’s value. As a consequence, if the derivatives are calculated in every hidden layer, they values are very small, near zero. It has a very negative impact on the property of the learning algorithm. In this area, an algorithm is working very slowly. Two factors now have big impact on the neural network development: big databases and power microprocessors. Therefore, a deep neural network with many hidden layers could be used in practice tasks. To improve the gradient calculation a new activation function, ReLU, is used. In the article, the properties of these neural networks are studied. It is the first step to building more powerful networks that are known as Convolutional Neural Networks.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2018, 96; 47-58
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystywanie programów uczenia w głębokim uczeniu przez wzmacnianie. O istocie rozpoczynania od rzeczy małych
Using Training Curriculum with Deep Reinforcement Learning. On the Importance of Starting Small
Autorzy:
KOZIARSKI, MICHAŁ
KWATER, KRZYSZTOF
WOŹNIAK, MICHAŁ
Powiązania:
https://bibliotekanauki.pl/articles/456567.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Rzeszowski
Tematy:
głębokie uczenie przez wzmacnianie
uczenie przez transfer
uczenie się przez całe życie
proces uczenia
deep reinforcement learning
transfer learning
lifelong learning,
curriculum learning
Opis:
Algorytmy uczenia się przez wzmacnianie są wykorzystywane do rozwiązywania problemów o stale rosnącym poziomie złożoności. W wyniku tego proces uczenia zyskuje na złożoności i wy-maga większej mocy obliczeniowej. Wykorzystanie uczenia z przeniesieniem wiedzy może czę-ściowo ograniczyć ten problem. W artykule wprowadzamy oryginalne środowisko testowe i eks-perymentalnie oceniamy wpływ wykorzystania programów uczenia na głęboką odmianę metody Q-learning.
Reinforcement learning algorithms are being used to solve problems with ever-increasing level of complexity. As a consequence, training process becomes harder and more computationally demanding. Using transfer learning can partially elevate this issue by taking advantage of previ-ously acquired knowledge. In this paper we propose a novel test environment and experimentally evaluate impact of using curriculum with deep Q-learning algorithm.
Źródło:
Edukacja-Technika-Informatyka; 2018, 9, 2; 220-226
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka nawierzchni drogowej przy zastosowaniu metod sieci neuronowych – studium przypadku
Road pavement diagnostics using neural network methods – a case study
Autorzy:
Jóźwiak, Zuzanna
Pożarycki, Andrzej
Górnaś, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/24024764.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
sieci neuronowe
głębokie uczenie maszynowe
diagnostyka nawierzchni
obrazy cyfrowe
neural networks
deep machine learning
pavement diagnostics
digital images
Opis:
W artykule przedstawiono zastosowanie metody głębokiego uczenia maszynowego, wykorzystanej do jednego z zagadnień diagnostyki nawierzchni drogowej. Opisano techniki głębokiego uczenia maszynowego do rozpoznawania wybranej grupy uszkodzeń nawierzchni zarejestrowanych na obrazach cyfrowych. W ramach eksperymentu numerycznego porównano między sobą dwa modele powszechnie znane jako VGG16 i VGG19. Architektura sieci reprezentowana jest poprzez schemat połączeń charakterystyczny dla konwolucyjnych sieci neuronowych, które z założenia przeznaczone są na potrzeby identyfikacji obiektów na obrazach cyfrowych. Mimo wszystko źródłowa baza danych, znana pod angielską nazwą ImageNet, nie zawiera obrazów cyfrowych nawierzchni jezdni. W celu poszerzenia wiedzy w tym zakresie autorzy utworzyli bazę ortogonalnych obrazów cyfrowych nawierzchni jezdni i opisali jeden z możliwych scenariuszy wykorzystania tych narzędzi do zautomatyzowanej identyfikacji uproszczonej wersji wskaźnika stanu powierzchni.
This paper presents the application of deep machine learning method used for one of the problems of road pavement diagnostics. Deep machine learning techniques for the recognition of a selected group of pavement surface defects observed in digital images are described. In a numerical experiment, two models commonly known as VGG16 and VGG19 were compared to each other. The network architecture is represented by a connection scheme characteristic of convolutional neural networks, which by design are intended for the purpose of identifying objects in digital images. Nevertheless, the source database known as ImageNet does not contain digital images of pavement surfaces. In order to extend the knowledge in this area, the authors created a database of orthogonal digital images of pavement surfaces and described one of the possible scenarios of using these tools for automated identification of a simplified version of the surface condition index.
Źródło:
Drogownictwo; 2022, 2-3; 65--72
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zwiększenie rozdzielczości obrazów termowizyjnych metodą sieci neuronowych głębokiego uczenia
Increasing of Thermal Images Resolution Using Deep Learning Neural Networks
Autorzy:
Więcek, Piotr
Sankowski, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/2068620.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
resztkowe sieci neuronowe
głębokie uczenie
superrozdzielczość
obraz termograficzny
PyTorch
residual neural networks
deep learning
super-resolution
thermographic image
Opis:
W pracy przedstawiono nowy algorytm zwiększenia rozdzielczości obrazów termowizyjnych. W tym celu zintegrowano sieć resztkową z modułem współdzielonego filtru z podpróbkowaniem obrazu KSAC (ang. Kernel-Sharing Atrous Convolution). Uzyskano znaczne skrócenie czasu działania algorytmu przy zachowaniu dużej dokładności. Sieć neuronową zrealizowano w środowisku PyTorch. Przedstawiono wyniki działania proponowanej nowej metody zwiększenia rozdzielczości obrazów termowizyjnych o wymiarach 32×24, 160×120 i 640×480 dla skali 2-6.
The article presents a new algorithm for increasing the resolution of thermal images. For this purpose, the residual network was integrated with the Kernel-Sharing Atrous Convolution (KSAC) image sub-sampling module. A significant reduction in the algorithm’s complexity and shortening the execution time while maintaining high accuracy were achieved. The neural network has been implemented in the PyTorch environment. The results of the proposed new method of increasing the resolution of thermal images with sizes 32x24, 160×120 and 640×480 for scales up to 6 are presented.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 3; 31--35
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatic detection of Alzheimers disease based on artificial intelligence
Automatyczne wykrywanie choroby Alzheimera w oparciu o sztuczną inteligencję
Autorzy:
Benba, Achraf
Abdelilah, Kerchaoui
Powiązania:
https://bibliotekanauki.pl/articles/27315370.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
Alzheimer’s disorder
artificial intelligence
deep learning
signal processing
choroba Alzheimera
sztuczna inteligencja
głębokie uczenie się
przetwarzanie sygnału
Opis:
Alzheimer's disease is a neurodegenerative disease that progressively destroys neurons through the formation of platelets that prevent communication between neurons. The study carried out in this project aims to find a precise and relevant diagnostic solution based on artificial intelligence and which helps in the early detection of Alzheimer's disease in order to stop its progression. The study went through a process of processing MRI images followed by training of three deep learning algorithms (VGG-19, Xception and DenseNet121) and finally by a step of testing and predicting the results. The results of the accuracy metric obtained for the three algorithms were respectively 98%, 95%, 91%.
Choroba Alzheimera jest chorobą neurodegeneracyjną, która stopniowo niszczy neurony poprzez tworzenie płytek krwi, które uniemożliwiają komunikację między neuronami. Badania prowadzone w ramach tego projektu mają na celu znalezienie precyzyjnego i trafnego rozwiązania diagnostycznego opartego na sztucznej inteligencji, które pomoże we wczesnym wykryciu choroby Alzheimera w celu zatrzymania jej postępu. Badanie przeszło przez proces przetwarzania obrazów MRI, po którym następowało szkolenie trzech algorytmów głębokiego uczenia (VGG-19, Xception i DenseNet121), a na koniec etap testowania i przewidywania wyników. Wyniki metryki dokładności otrzymane dla trzech algorytmów wyniosły odpowiednio 98%, 95%, 91%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 1; 18--21
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smart optimizer selection technique:a comparative study of modified DensNet201 with other deep learning models
Inteligentna technika wyboru optymalizatora: badanie porównawcze zmodyfikowanego modelu DensNet201 z innymi modelami głębokiego uczenia
Autorzy:
Manguri, Kamaran
Mohammed, Aree Ali
Powiązania:
https://bibliotekanauki.pl/articles/27315461.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
deep learning
optimization technique
transfer learning
customized dataset
modified DenseNet201
głębokie uczenie
technika optymalizacji
uczenie transferowe
dostosowany zbiór danych
zmodyfikowany DenseNet201
Opis:
The rapid growth and development of AI-based applications introduce a wide range of deep and transfer learning model architectures. Selecting an optimal optimizer is still challenging to improve any classification type's performance efficiency and accuracy. This paper proposes an intelligent optimizer selection technique using a newsearch algorithm to overcome this difficulty. A dataset used in this work was collected and customizedfor controlling and monitoring roads, especially when emergency vehicles are approaching. In this regard, several deep and transfer learning models havebeen compared for accurate detection and classification. Furthermore, DenseNet201 layers are frizzed to choose the perfect optimizer. The main goalis to improve the performance accuracy of emergency car classification by performing the test of various optimization methods, including (Adam, Adamax, Nadam, and RMSprob). The evaluation metrics utilized for the model’s comparison with other deep learning techniques are basedon classification accuracy, precision, recall, and F1-Score. Test results show that the proposed selection-based optimizer increased classification accuracy and reached 98.84%.
Szybki wzrost i rozwój aplikacji opartych na sztucznej inteligencji wprowadzają szeroki zakres architektur modeli głębokiego uczeniai uczenia transferowego. Wybór optymalnego optymalizatora wciąż stanowi wyzwanie w celu poprawy wydajności i dokładności każdego rodzaju klasyfikacji. W niniejszej pracy proponowana jest inteligentna technika wyboru optymalizatora, wykorzystująca nowy algorytm wyszukiwania,aby pokonać to wyzwanie. Zbiór danych użyty w tej pracy został zebrany i dostosowany do celów kontroli i monitorowania dróg, zwłaszcza w sytuacjach, gdy zbliżają się pojazdy ratunkowe. W tym kontekście porównano kilka modeli głębokiego uczenia i uczenia transferowego w celu dokładnej detekcjii klasyfikacji. Ponadto, warstwy DenseNet201 zostały zamrożone, aby wybrać optymalizatora idealnego. Głównym celem jest poprawa dokładności klasyfikacji samochodów ratunkowych poprzez przeprowadzenie testów różnych metod optymalizacji, w tym (Adam, Adamax, Nadam i RMSprob). Metryki oceny wykorzystane do porównania modelu z innymi technikami głębokiego uczenia opierają się na dokładności klasyfikacji, precyzji, czułości i miarze F1. Wyniki testów pokazują, że zaproponowany optymalizator oparty na wyborze zwiększył dokładność klasyfikacji i osiągnął wynik na poziomie 98,84%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 39--43
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning: theory and practice
Autorzy:
Cichocki, A.
Poggio, T.
Osowski, S.
Lempitsky, V.
Powiązania:
https://bibliotekanauki.pl/articles/202346.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
networks
theory
practice
uczenie głębokie
sieci
teoria
praktyka
Opis:
This Special Section of the Bulletin of the Polish Academy of Sciences on Technical Sciences is devoted to theoretical aspects of deep machine learning as well as practical applications in some areas of signal and image processing, particularly in bioengineering.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 757-759
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Głębokie sieci rekurencyjne i konwolucyjne w detekcji wad spawalniczych dla systemów z robotem przemysłowym
Deep Recurrent and Convolutional Networks in the Detection of Welding Defects for Systems with an Industrial Robot
Autorzy:
Adamczak, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/2068632.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
głębokie uczenie maszynowe
szeregi czasowe
stanowisko zrobotyzowane
detekcja wad spoin
deep learning
time series
robotic station
detection of weld defects
Opis:
Podczas procesów spawania metodą MIG/MAG w produkcji wielkoseryjnej na stanowiskach zrobotyzowanych, często wymagana jest automatyczna kontrola jakości wykonanego spawu. Określanie defektów spawalniczych jest trudne, a powód ich wystąpienia nie zawsze jest znany. Jednym z warunków poprawnie wykonanej spoiny jest stabilność podczas procesu spawania, co przekłada się na ciągłość i zwiększenie ogólnej wydajności produkcji. W artykule przedstawiono wyniki badań nad systemem detekcji defektów spoiny łączącego analizę i klasyfikację szeregów czasowych parametrów spawania dla metody MIG/MAG wraz z równoczesną analizą i klasyfikacją danych obrazowych spoiny dla systemów zrobotyzowanych. Wykorzystane zostały konstrukcje głębokich sieci neuronowych rekurencyjnych i konwolucyjnych. Przedstawiono również konstrukcję sieci neuronowej zawierającej dwa wejścia systemowe, umożliwiającej w jednym czasie klasyfikację zdjęcia spoiny wraz z szeregiem czasowym dla zastosowania w stanowisku zrobotyzowanym. Przedstawione wyniki prac badawczych otrzymano podczas realizacji projektu „Opracowanie metody bazującej na zastosowaniu głębokich sieci neuronowych do inspekcji wizyjnej połączeń spawanych w toku prac B+R” finansowanego z Wielkopolskiego Regionalnego Programu Operacyjnego na lata 2014–2020 i realizowanego w zakładzie ZAP-Robotyka Sp. z o.o. w Ostrowie Wielkopolskim.
During MIG/MAG welding processes in large-scale production on robotic stations, automatic quality control of the weld is often required. Determining welding defects is difficult and the reason for their occurrence is not always known. One of the conditions for a correctly made weld is stability during the welding process, which translates into continuity and increase in overall production efficiency. The article presents the results of research on the creation of a weld defect detection system combining the analysis and classification of time series of welding parameters for the MIG/MAG method along with the simultaneous analysis and classification of weld image data for robotic systems. For this purpose, the structures of deep recursive and convolutional neural networks were used. The design of a neural network with two system inputs allowing for the classification of the weld photo together with the time series for use in a robotic station is also presented. The research results presented in this article were obtained during the implementation of the project entitled „Development of a method based on the use of deep neural networks for visual inspection of welded joints in the course of R&D works” implemented at the company ZAP-Robotyka Sp. z o.o. in Ostrów Wielkopolski.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 2; 17--22
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arabic and American Sign Languages Alphabet Recognition by Convolutional Neural Network
Autorzy:
Alshomrani, Shroog
Aljoudi, Lina
Arif, Muhammad
Powiązania:
https://bibliotekanauki.pl/articles/2023675.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
convolutional neural network
deep learning
American sign language
Arabic sign language
sieć neuronowa
głębokie uczenie
amerykański język migowy
arabski język migowy
Opis:
Hearing loss is a common disability that occurs in many people worldwide. Hearing loss can be mild to complete deafness. Sign language is used to communicate with the deaf community. Sign language comprises hand gestures and facial expressions. However, people find it challenging to communicate in sign language as not all know sign language. Every country has developed its sign language like spoken languages, and there is no standard syntax and grammatical structure. The main objective of this research is to facilitate the communication between deaf people and the community around them. Since sign language contains gestures for words, sentences, and letters, this research implemented a system to automatically recognize the gestures and signs using imaging devices like cameras. Two types of sign languages are considered, namely, American sign language and Arabic sign language. We have used the convolutional neural network (CNN) to classify the images into signs. Different settings of CNN are tried for Arabic and American sign datasets. CNN-2 consisting of two hidden layers produced the best results (accuracy of 96.4%) for the Arabic sign language dataset. CNN-3, composed of three hidden layers, achieved an accuracy of 99.6% for the American sign dataset.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 4; 136-148
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda detekcji wad spawalniczych w stanowisku zrobotyzowanym z wykorzystaniem głębokiej sieci neuronowej
Detection Method of Welding Defects in a Robotic Station Using the Deep Neural Network
Autorzy:
Adamczak, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/2068644.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
głębokie uczenie maszynowe
Przemysł 4.0
stanowisko zrobotyzowane
detekcja wad spoin
deep learning
Industry 4.0
robotic station
detection of weld defects
Opis:
Współczesna automatyzacja i robotyzacja procesów produkcyjnych wymaga nowych i szybkich metod kontroli jakości produktu. W przypadku spawania łukowego w systemach zrobotyzowanych, gdzie proces produkcyjny przebiega wielkoseryjnie istotną rzeczą jest szybka kontrola poprawności wykonanego spawu. System w oparciu o dane wizualne powinien być zdolny automatycznie określić czy dana spoina spełnia podstawowe wymagania jakościowe a tym samym mieć możliwość zatrzymania procesu w razie zidentyfikowanych wad. W artykule przedstawiono wyniki badań nad stworzeniem wizyjnej metody oceny poprawności wykonanej spoiny w oparciu o głęboką sieć neuronową klasyfikującą, lokalizującą i segmentującą wady spawalnicze. Zaproponowana metoda detekcji została rozbudowana przez zastosowanie połączenia kamery systemu wizyjnego z sześcioosiowym robotem przemysłowym w celu umożliwienia detekcji większej liczby wad spawalniczych oraz pozycjonowania w sześciowymiarowej przestrzeni pracy. Przedstawione w artykule wyniki prac badawczych otrzymano podczas realizacji projektu „Opracowanie metody bazującej na zastosowaniu głębokich sieci neuronowych do inspekcji wizyjnej połączeń spawanych w toku prac B+R” realizowanego w zakładzie ZAP-Robotyka Sp. z o.o. w Ostrowie Wielkopolskim.
Modern automation and robotization of production processes requires new and fast methods of product quality control. In the case of arc welding in robotic systems, where the production process takes place in large series, it is important to quickly control the correctness of the weld. Based on visual data, the system should be able to automatically determine whether a given weld meets the basic quality requirements, and thus be able to stop the process in the event of identified defects. The article presents the results of research on the creation of a visual method for assessing the correctness of the weld seam based on the deep neural network classifying, locating and segmenting welding defects. The proposed detection method was extended by using a combination of a vision system camera with a six-axis industrial robot in order to enable detection of a larger number of welding defects and positioning in a six-dimensional workspace. The research results presented in this article were obtained during the implementation of the project entitled „Development of a method based on the use of deep neural networks for visual inspection of welded joints in the course of R&D works” implemented at the company ZAP-Robotyka Sp. z o.o. in Ostrów Wielkopolski.
Źródło:
Pomiary Automatyka Robotyka; 2021, 25, 1; 67--72
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uczenie głębokie w diagnostyce medycznej
Deep Learning in Medical Diagnosis
Autorzy:
Antczak, K.
Powiązania:
https://bibliotekanauki.pl/articles/404011.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
sieci neuronowe
diagnostyka medyczna
uczenie głębokie
neural networks
medical diagnosis
deep learning
Opis:
W pracy przeanalizowano perspektywy zastosowania metod uczenia głębokiego w diagnostyce medycznej. Jedną z kluczowych cech uczenia głębokiego jest zdolność do wyodrębniania złożonych wzorców o strukturze hierarchicznej. Wzorce takie występują również w diagnostyce, jako tak zwane diamenty diagnostyczne. Zastosowanie głębokich sieci neuronowych mogłoby poprawić jakość klasyfikatorów wykrywających choroby na podstawie objawów. Dodatkowo umożliwiłoby to sterowanie czułoscią i swoistością klasyfikatorów.
In this paper we analyze perspectives of applying deep learning methods in a field of medical diagnosis. One of key features of deep learning is ability to extract complex, hierarchical patterns. Such patterns are present also in a medical diagnosis, where they are known as diagnostic diamonds. Applying deep neural networks could increase performance of medical classifiers. Moreover, it would allow to adjust sensitivity and specificity of classifiers.
Źródło:
Symulacja w Badaniach i Rozwoju; 2016, 7, 3-4; 83-88
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies