Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Prognozowanie szeregów czasowych" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
Wpływ liczby „najbliższych sąsiadów” na dokładność prognoz ekonomicznych szeregów czasowych
Effect of the number of “nearest neighbors” on the accuracy of economic time series forecasts
Autorzy:
Miśkiewicz-Nawrocka, Monika
Powiązania:
https://bibliotekanauki.pl/articles/591526.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Metoda najbliższych sąsiadów
Prognozowanie szeregów czasowych
Rekonstrukcja przestrzeni stanów
State space reconstruction
The nearest neighbors method
Time series forecasting
Opis:
Metoda najbliższych sąsiadów jest jedną z metod prognozowania szeregów czasowych. W metodzie tej, prognozę (N+1)-go elementu ˆN+1 x szacuje się jako średnią ważoną obserwacji xi+1, gdzie wektory d i x są k najbliższymi sąsiadami wektora d N x w zrekonstruowanej d-wymiarowej przestrzeni stanów. Istotnym problemem podczas stosowania tej metody jest wyznaczenie prawidłowej liczby najbliższych sąsiadów, która powinna być brana pod uwagę przy wyznaczaniu prognoz. Głównym celem artykułu jest zbadanie wpływu liczby najbliższych sąsiadów na dokładność prognoz ekonomicznych szeregów czasowych. Badania zostały przeprowadzone w oparciu o wybrane finansowe szeregi czasowe.
One of time series forecasting method is the nearest neighbors method. In this method, the forecast for (N+1)-th element ˆN +1 x is estimated as a weighted average of observations i+1 x , where the vectors d i x are k nearest neighbors of vector d N x in the reconstructed d-dimensional state space. An important problem when using nearest neighbors method is to determine the correct number of nearest neighbors, that should be taken into account in the determination of forecasts. The aim of the article will be to research the effect of the number of nearest neighbors on the accuracy of economic time series forecasts. The test will be conducted on the basis of selected financial time series.
Źródło:
Studia Ekonomiczne; 2016, 295; 60-69
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting models for chaotic fractional-order oscillators using neural networks
Autorzy:
Bingi, Kishore
Prusty, B Rajanarayan
Powiązania:
https://bibliotekanauki.pl/articles/2055150.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
chaotic oscillators
data driven forecasting
fractional order system
model free analysis
neural network
time series prediction
oscylator chaotyczny
układ rzędu ułamkowego
sieć neuronowa
prognozowanie szeregów czasowych
Opis:
This paper proposes novel forecasting models for fractional-order chaotic oscillators, such as Duffing’s, Van der Pol’s, Tamaševičius’s and Chua’s, using feedforward neural networks. The models predict a change in the state values which bears a weighted relationship with the oscillator states. Such an arrangement is a suitable candidate model for out-of-sample forecasting of system states. The proposed neural network-assisted weighted model is applied to the above oscillators. The improved out-of-sample forecasting results of the proposed modeling strategy compared with the literature are comprehensively analyzed. The proposed models corresponding to the optimal weights result in the least mean square error (MSE) for all the system states. Further, the MSE for the proposed model is less in most of the oscillators compared with the one reported in the literature. The proposed prediction model’s out-of-sample forecasting plots show the best tracking ability to approximate future state values.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 387--398
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie sprzedaży paliw płynnych na podstawie dziennych szeregów czasowych
The modelling of the sales of liquid fuel for daily data
Autorzy:
Szmuksta-Zawadzka, M.
Zawadzki, J.
Powiązania:
https://bibliotekanauki.pl/articles/78523.pdf
Data publikacji:
2010
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
paliwa plynne
sprzedaz
modelowanie
szeregi czasowe
dane dobowe
modele szeregow czasowych
prognozowanie
Opis:
The papers present analisys of econometrical modelling of the daily retail sales of liquid fuel. There were analised one petrol station of the firm which plays important role on the fuel market. The variable was described by time series hierarchical models with two types of seasonal variations: weekly variations and 12 months ones. Additionally there were included feast-days and days before and after feast-days.
Źródło:
Folia Pomeranae Universitatis Technologiae Stetinensis. Oeconomica; 2010, 59
2081-0644
Pojawia się w:
Folia Pomeranae Universitatis Technologiae Stetinensis. Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Review of the book ,,The analysis and forecasting of time series. Practical introduction on the basis of the R environment by: A. Zagdanski and A. Suchwałko
Autorzy:
Burnecki, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/747794.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
time series models
forecasting
data analysis
modele szeregów czasowych
prognozowanie
analiza danych
Opis:
Niniejsza książka stanowi praktyczne wprowadzenie do modelowania w środowisku R różnorodnych danych zbieranych w regularnych odstępach czasu. Książka adresowana jest do wszystkich zainteresowanych modelami szeregów czasowych a szczególnie do studentów i absolwentów kierunków ścisłych, ekonomicznych oraz technicznych.
This book provides a practical introduction to the R environment variety of modeling data collected at regular intervals. The book is addressed to anyone interested in time series models, and mainly to students and graduates of scientific, economic and technical faculties. 
Źródło:
Mathematica Applicanda; 2016, 44, 2
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wielomodelowe prognozowanie liczby pasażerów przewożonych krajowym transportem lotniczym w Stanach Zjednoczonych w 2021 r.
Multi-model forecast of the number of passengers transported by domestic air transport in the United States for 2021
Autorzy:
Kozicki, Bartosz
Sowa, Bogdan
Powiązania:
https://bibliotekanauki.pl/articles/2085882.pdf
Data publikacji:
2021-07-31
Wydawca:
Polskie Wydawnictwo Ekonomiczne
Tematy:
transport
transport lotniczy
COVID-19
prognozowanie
analiza szeregów czasowych
air transport
forecasting
time series analysis
Opis:
W artykule przedstawiono dane dotyczące liczby pasażerów przewiezionych pasażerskim transportem lotniczym krajowym i międzynarodowym w Stanach Zjednoczonych w ujęciu miesięcznym w latach 2003–2020 i ich prognozowania na 2021 r. Badania rozpoczęto od analizy i oceny dwóch szeregów czasowych dotyczących liczby pasażerów przewiezionych transportem lotniczym pasażerskim w Stanach Zjednoczonych w ujęciu krajowym i międzynarodowym. Zbudowano model Kleina, za pomocą którego wykonano prognozowanie szeregu czasowego liczby pasażerów przewożonych transportem lotniczym krajowym w ujęciu miesięcznym na rok 2021. Zbudowany model jest połączeniem prognozowania ilościowego i jakościowego.
The article presents data on the number of passengers transported by domestic and international passenger air transport in the United States on a monthly basis in the years 2003–2020 and their forecasting for 2021. The research began with the analysis and evaluation of two time series concerning the number of passengers transported by passenger air transport in the United States in terms of national and international approach. The Klein model was built, which was used to forecast the time series of the number of passengers transported by domestic air transport on a monthly basis for the year 2021. The constructed model is a combination of quantitative and qualitative forecasting.
Źródło:
Gospodarka Materiałowa i Logistyka; 2021, 7; 23-32
1231-2037
Pojawia się w:
Gospodarka Materiałowa i Logistyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie modelu Wintersa do prognozowania jakości powietrza powiatu kędzierzyńsko-kozielskiego
Winters model - a study of applications for forecasting air quality in Kędzierzyn-Koźle county
Autorzy:
Szewczyk, M.
Tłuczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/339242.pdf
Data publikacji:
2010
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
analiza szeregów czasowych
prognozowanie
jakość powietrza
zarządzanie jakością powietrza
air quality management
air quality
forecasting
time-series analysis
Opis:
Powiat Kędzierzyn-Koźle jest jednostką administracji terytorialnej i samorządowej województwa opolskiego, w południowo-zachodniej Polsce. Istniejąca w Kędzierzynie-Koźlu sieć monitoringu powietrza obejmuje dziś tylko jedną w pełni automatyczną stację monitoringu. Emisja wielu zanieczyszczeń powietrza w Kędzierzynie-Koźlu zmniejszyła się znacząco od 1992 r., jednak od 2007 r. stężenie NO2 i pyłu zawieszonego PM10 w powietrzu się nie zmniejszyło. Zmniejszenie stężenia zanieczyszczeń powietrza jest nadal konieczne. Prognozowanie jakości powietrza to jeden z kluczowych elementów współczesnego zarządzania jakością powietrza. W artykule przedstawiono modele i prognozy stężenia SO2, NO2, CO, O3 i PM10, skonstruowane na podstawie danych, pozyskanych z automatycznej stacji monitoringu w Kędzierzynie-Koźlu.
Kędzierzyn-Koźle County is a unit of territorial administration and local government in Opole Voivodeship, south-western Poland. The existing air monitoring network in Kędzierzyn-Koźle comprises only one fully automatic monitoring station now. In Kędzierzyn-Koźle, emissions of many air pollutants have substantially decreased since 1992. However, since 2007, measured concentrations of NO2 and particulate matter PM10 in the air have not shown any improvement. The need to reduce air pollution still remains an important issue. Air quality forecasting is one of the core elements of contemporary air quality management. This paper presents models and forecasts of SO2, NO2, CO, O3 and PM10 concentrations based on data from automatic monitoring station in Kędzierzyn-Koźle.
Źródło:
Woda-Środowisko-Obszary Wiejskie; 2010, 10, 3; 283-296
1642-8145
Pojawia się w:
Woda-Środowisko-Obszary Wiejskie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The importance of data revisions for statistical inference
Znaczenie rewizji danych dla wnioskowania statystycznego
Autorzy:
Ziembińska, Paulina
Powiązania:
https://bibliotekanauki.pl/articles/985676.pdf
Data publikacji:
2021
Wydawca:
Główny Urząd Statystyczny
Tematy:
data revisions
real-time data
time series analysis
forecasting
rewizje danych
dane w czasie rzeczywistym
analiza szeregów czasowych
prognozowanie
Opis:
The aim of the study is a quantitative analysis of revisions conducted by means of a new, real-time macroeconomic dataset for Poland, designed on the basis of the Statistical bulletin (Biuletyn statystyczny) published by Statistics Poland, covering the period from as early as 1995 until 2017. Polish data have positively verified a number of hypotheses concerning the impact of data revisions on the modelling process. Procedures assessing the properties of time series can yield widely discrepant results, depending on the extent to which the applied data have been revised. A comparison of the fitted ARIMA models for series of initial and final data demonstrates that the fitted models are similar for the majority of variables. In the cases where the form of the model is identical for both series, the coefficients retain their scale and sign. Most differences between coefficients result from a different structure of the fitted model, which causes differ-ences in the autoregressive structure and can have a considerable impact on the ex ante infer-ence. A prognostic experiment confirmed these observations. For a large number of variables, the total impact of revisions on the forecasting process exceeds 10%. Extreme cases, where the impact goes beyond 100%, or situations where data have a direct impact on the forecast sign, are also relatively frequent. Taking these results into account by forecasters could significantly improve the quality of their predictions. The forecast horizon has a minor impact on these conclusions. The article is a continuation of the author's work from 2017.
Celem pracy jest ilościowa analiza rewizji danych makroekonomicznych w czasie rzeczywistym dla Polski pochodzących z nowego zbioru utworzonego na podstawie „Biuletynu statystycznego” GUS i obejmującego okres od 1995 do 2017 r. Polskie dane pozytywnie weryfikują wiele hipotez dotyczących wpływu rewizji danych na proces modelowania. Procedury oceniające własności szeregów czasowych mogą dawać istotnie różne wyniki w zależności od tego, jak bardzo rewidowane dane zostaną użyte. Porównanie dopasowanych modeli ARIMA dla szeregów pierwszych i finalnych odczytów wskazuje, że w przypadku większości zmiennych dopasowane modele są podobne. Gdy postać modelu jest taka sama dla obu szeregów, współczynniki zachowują skalę i znak. Większość różnic we współczynnikach wynika z odmiennej struktury dopasowanego modelu, co wpływa na różnice w strukturze autoregresyjnej i może mieć niemały wpływ na wnioskowanie ex ante. Potwierdza to eksperyment prognostyczny. Dla dużej części zmiennych całkowity wpływ rewizji na proces prognozowania wynosi powyżej 10%. Nie są też wyjątkiem ekstremalne przypadki, w których ten wpływ przekracza 100%, czy sytuacje, w których dane bezpośrednio wpływają na znak prognozy. Uwzględnienie tych wyników przez prognostów mogłoby znacząco poprawić jakość predykcji. Horyzont prognozy ma niewielki wpływ na te konkluzje. Artykuł jest kontynuacją pracy autorki z 2017 r.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2021, 66, 2; 7-24
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie szeregów czasowych aktualizacji Jednolitych Plików Kontrolnych
Forecasting of Standard Audit Files for Tax (Saf-T) updates
Autorzy:
Ćwikliński, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/589569.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza szeregów czasowych
BATS/TBATS
Dekompozycja
Jednolity Plik Kontrolny
Prognozowanie
SARIMA
Analyze of time series
BATS
Decomposition
Predicting
Standard Audit Files for Tax (SAF-T)
TBATS
Opis:
Prognozowanie szeregów czasowych stało się niezbędne w procesie kontrolowania procesów zachodzących w systemach informatycznych Ministerstwa Finansów. Wymierne w sensie finansowym są problemy braku lub niepełnej aktualizacji relacyjnej bazy danych JPK_VAT w akceptowalnym przez prawo terminie. W tym przypadku niezwykle ważna okazuje się umiejętność zastosowania nie tylko klasycznych modeli uwzględniających składniki sezonowe (np. SARIMA), ale także złożone składniki systematyczne (BATS/TBATS). Dokonano analizy szeregów czasowych pod kątem występowania składników systematycznych, postawiono prognozy i przetestowano reszty. Otrzymano i zestawiono wyniki testów wskazujące na konieczność zastosowania modelu TBATS.
The forecasting of different time series became necessary process at the Ministry of Finance IT systems. The problems with lack of information and actual updates of Standard Audit Files for Tax are known. Capabilities to choosing right predicting model of time series with complex seasonal patterns are crucial in some cases. In the article, author made the decomposition of time series with complex seasonal patterns. The results of modeling and testing indicated the best predicting (according to Mean Absolute Percentage Error) and time series decomposition method – TBATS.
Źródło:
Studia Ekonomiczne; 2019, 390; 76-90
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie metody moving block bootstrap w prognozowaniu szeregów czasowych z wahaniami okresowymi
The Use of the Moving Block Bootstrap Method in Periodic Time Series Forecasting
Autorzy:
Kończak, Grzegorz
Miłek, Michał
Powiązania:
https://bibliotekanauki.pl/articles/586452.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza szeregów czasowych
Metody statystyczne
Modele ARIMA
Prognozowanie matematyczne
Szeregi czasowe
Autoregressive integrated moving average (ARIMA) models
Mathematical forecasting
Statistical methods
Time-series
Time-series analysis
Opis:
The aim of the analysis of the time series is, among others, to facilitate the formulation of prognosis. The basis for the inference of the future variables are their future realizations. There are various methods used in time series forecasting, such as for example naïve method, Holt-Winters models, ARIMA models and various simulation methods. One of the most popular and widely used simulation method in statistical research is the bootstrap method proposed by B. Efron. It is usually applied in measuring the estimates of the variance and testing the hypotheses in cases when the distribution of the test statistic is unknown. This method does not require for the selected samples to be from the standard normal distribution population. Due to the construction of the random samples in this method, there is usually no possibility to directly apply it in the analysis of the periodic time series. In the literature written on this subject, there are the proposals to introduce some modifications to the bootstrap method that would provide the possibility to conduct such analyses. One of such methods is the moving block bootstrap. In the present essay, we will present the proposal to apply this method to create the confidential intervals for the periodic time series forecasts. The results gathered by applying that method are compared with the results obtained via the classic construction of the confidential intervals for the forecasts and on the confidential intervals based on ARIMA models.
Źródło:
Studia Ekonomiczne; 2014, 203; 91-100
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie i dekompozycja szeregów czasowych aktualizacji Jednolitych Plików Kontrolnych
Modeling and decomposition of Standard Sudit Files for Tax (SAF-T) updates
Autorzy:
Ćwikliński, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/590746.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza szeregów czasowych
BATS/TBATS
Dekompozycja
Jednolity Plik Kontrolny
Prognozowanie
SARIMA
Analyze of time series
BATS
Decomposition
Predicting
Standard Audit Files for Tax (SAF-T)
TBATS
Opis:
Modelowanie szeregów czasowych stało się niezbędne w procesie kontrolowania procesów zachodzących w systemach informatycznych Ministerstwa Finansów RP. Wymierne w sensie finansowym są problemy braku lub niepełnej aktualizacji relacyjnej bazy danych JPK_VAT w akceptowalnym przez prawo terminie. W tym przypad-ku niezwykle ważna okazuje się umiejętność zastosowania nie tylko klasycznych modeli uwzględniających składniki sezonowe (np. SARIMA), ale także złożone składniki systematyczne (BATS/TBATS). Dokonano analizy szeregów czasowych pod kątem występowania składników systematycznych, estymowano parametry strukturalne modeli, otrzymano i zestawiono wyniki testów wskazujące na konieczność zastosowania modelu TBATS.
The modeling different time series became necessary process at the Ministry of Finance IT systems. The problems with lack of information and actual updates of Standard Audit Files for Tax are known. Capabilities to choosing right model of time series with complex seasonal patterns are crucial in some cases. In the article, author made the decomposition of time series with complex seasonal patterns. The results of modeling and testing indicated the best predicting (according to Mean Absolute Percentage Error) and time series decomposition method – TBATS.
Źródło:
Studia Ekonomiczne; 2019, 390; 60-75
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting municipal waste accumulation rate and personal consumption expenditures using vector autoregressive (VAR) model
Autorzy:
Bień, Jurand
Powiązania:
https://bibliotekanauki.pl/articles/23966648.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Menedżerów Jakości i Produkcji
Tematy:
wskaźnik akumulacji odpadów
wydatki konsumpcyjne
prognozowanie
analiza szeregów czasowych
wielowymiarowe szeregi czasowe
model autoregresji wektorowej
waste accumulation rate
consumption expenditures
forecasting
time-series analysis
multivariate time series models
vector autoregression model
Opis:
Accurate forecasting of municipal solid waste (MSW) generation is important for the planning, operation and optimization of municipal waste management system. However, it’s not easy task due to dynamic changes in waste volume, its composition or unpredictable factors. Initially, mainly conventional and descriptive statistical models of waste generation forecasting with demographic and socioeconomic factors were used. Methods based on machine learning or artificial intelligence have been widely used in municipal waste projection for several years. This study investigates the trend of municipal waste accumulation rate and its relation to personal consumption expenditures based on the yearly data achieved from Local Data Bank (LDB) driven by Polish Statistical Office. The effect of personal consumption expenditures on the municipal waste accumulation rate was analysed by using the vector autoregressive model (VAR). The results showed that such method can be successfully used for this purpose with an approximate level of 2.3% Root Mean Square Error (RMSE).
Źródło:
Production Engineering Archives; 2022, 28, 2; 150--156
2353-5156
2353-7779
Pojawia się w:
Production Engineering Archives
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies