Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modelowanie i dekompozycja szeregów czasowych aktualizacji Jednolitych Plików Kontrolnych

Tytuł:
Modelowanie i dekompozycja szeregów czasowych aktualizacji Jednolitych Plików Kontrolnych
Modeling and decomposition of Standard Sudit Files for Tax (SAF-T) updates
Autorzy:
Ćwikliński, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/590746.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza szeregów czasowych
BATS/TBATS
Dekompozycja
Jednolity Plik Kontrolny
Prognozowanie
SARIMA
Analyze of time series
BATS
Decomposition
Predicting
Standard Audit Files for Tax (SAF-T)
TBATS
Źródło:
Studia Ekonomiczne; 2019, 390; 60-75
2083-8611
Język:
polski
Prawa:
CC BY-NC: Creative Commons Uznanie autorstwa - Użycie niekomercyjne 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Modelowanie szeregów czasowych stało się niezbędne w procesie kontrolowania procesów zachodzących w systemach informatycznych Ministerstwa Finansów RP. Wymierne w sensie finansowym są problemy braku lub niepełnej aktualizacji relacyjnej bazy danych JPK_VAT w akceptowalnym przez prawo terminie. W tym przypad-ku niezwykle ważna okazuje się umiejętność zastosowania nie tylko klasycznych modeli uwzględniających składniki sezonowe (np. SARIMA), ale także złożone składniki systematyczne (BATS/TBATS). Dokonano analizy szeregów czasowych pod kątem występowania składników systematycznych, estymowano parametry strukturalne modeli, otrzymano i zestawiono wyniki testów wskazujące na konieczność zastosowania modelu TBATS.

The modeling different time series became necessary process at the Ministry of Finance IT systems. The problems with lack of information and actual updates of Standard Audit Files for Tax are known. Capabilities to choosing right model of time series with complex seasonal patterns are crucial in some cases. In the article, author made the decomposition of time series with complex seasonal patterns. The results of modeling and testing indicated the best predicting (according to Mean Absolute Percentage Error) and time series decomposition method – TBATS.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies