Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "feature selection" wg kryterium: Temat


Tytuł:
Some Remarks on Feature Ranking Based Wrappers
Wybrane uwagi na temat podejścia wrappers bazującego na rankingu zmiennych
Autorzy:
Kubus, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/904802.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
feature selection
wrappers
feature ranking
Opis:
One of the approaches to feature selection in discrimination or regression is learning models using various feature subsets and evaluating these subsets, basing on model quality criterion (so called wrappers). Heuristic or stochastic search techniques are applied for the choice of feature subsets. The most popular example is stepwise regression which applies hillclimbing. Alternative approach is that features are ranked according to some criterion and then nested models are learned and evaluated. The sophisticated tools of obtaining a feature rankings are tree based ensembles. In this paper we propose the competitive ranking which results in slightly lower classification error. In the empirical study metric and binary noisy variables will be considered. The comparison with a popular stepwise regression also will be given.
Jednym z podejść do problemu selekcji zmiennych w dyskryminacji lub regresji jest wykorzystanie kryterium oceny jakości modeli budowanych na różnych podzbiorach zmiennych (tzw. wrappers). Do wyboru podzbiorów zmiennych stosowane są techniki przeszukiwania (heurystyczne lub stochastyczne). Najpopularniejszym przykładem jest regresja krokowa wykorzystująca strategię wspinaczki. Alternatywne podejście polega na uporządkowaniu zmiennych wg wybranego kryterium, a następnie budowaniu modeli zagnieżdżonych i ich ocenie. Zaawansowanymi narzędziami budowy rankingów są agregowane drzewa klasyfikacyjne. W artykule został zaproponowany konkurujący ranking, który prowadzi do nieco mniejszych błędów klasyfikacji. W studium empirycznym rozważane są zmienne nieistotne metryczne oraz binarne. Przedstawiono też porównanie z popularną regresją krokową.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 286
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
DISCRIMINANT STEPWISE PROCEDURE
Autorzy:
Kubus, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/655859.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
stepwise procedure
feature selection
model selection
Opis:
Stepwise procedure is now probably the most popular tool for automatic feature selection. In the most cases it represents model selection approach which evaluates various feature subsets (so called wrapper). In fact it is heuristic search technique which examines the space of all possible feature subsets. This method is known in the literature under different names and variants. We organize the concepts and terminology, and show several variants of stepwise feature selection from a search strategy point of view. Short review of implementations in R will be given.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2014, 3, 302
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supervised Kernel Principal Component Analysis by Most Expressive Feature Reordering
Autorzy:
Ślot, K.
Adamiak, K.
Duch, P.
Żurek, D.
Powiązania:
https://bibliotekanauki.pl/articles/308598.pdf
Data publikacji:
2015
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
feature selection
kernel methods
pattern classification
Opis:
The presented paper is concerned with feature space derivation through feature selection. The selection is performed on results of kernel Principal Component Analysis (kPCA) of input data samples. Several criteria that drive feature selection process are introduced and their performance is assessed and compared against the reference approach, which is a combination of kPCA and most expressive feature reordering based on the Fisher linear discriminant criterion. It has been shown that some of the proposed modifications result in generating feature spaces with noticeably better (at the level of approximately 4%) class discrimination properties.
Źródło:
Journal of Telecommunications and Information Technology; 2015, 2; 3-10
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Model Selection in Some Regularized Linear Regression Methods
O wyborze postaci modelu w wybranych metodach regularyzowanej regresji liniowej
Autorzy:
Kubus, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/905647.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
model selection
EDC
regularization
linear models
feature selection
Opis:
A dynamic development of various regularization formulas in linear models has been observed recently. Penalizing the values of coefficients affects decreasing of the variance (shrinking coefficients to zero) and feature selection (setting zero for some coefficients). Feature selection via regularized linear models is preferred over popular wrapper methods in high dimension due to less computational burden as well as due to the fact that it is less prone to overfitting. However, estimated coefficients (and as a result quality of the model) depend on tuning parameters. Using model selection criteria available in R implementation does not guarantee that optimal model will be chosen. Having done simulation study we propose to use EDC criterion as an alternative.
W ostatnich latach można zaobserwować dynamiczny rozwój różnych postaci regularyzacji w modelach liniowych. Wprowadzenie kary za duże wartości współczynników skutkuje zmniejszeniem wariancji (wartości współczynników są ,,przyciągane” do zera) oraz eliminacją niektórych zmiennych (niektóre współczynniki się zerują). Selekcja zmiennych za pomocą regularyzowanych modeli liniowych jest w problemach wielowymiarowych preferowana wobec popularnego podejścia polegającego na przeszukiwaniu przestrzeni cech i ocenie podzbiorów zmiennych za pomocą kryterium jakości modelu (wrappers). Przyczyną są mniejsze koszty obliczeń i mniejsza podatność na nadmierne dopasowanie. Jednakże wartości estymowanych współczynników (a więc także jakość modelu) zależą od parametrów regularyzacji. Zaimplementowane w tym celu w programie R kryteria jakości modelu nie gwarantują wyboru modelu optymalnego. Na podstawie przeprowadzonych symulacji w artykule proponuje się zastosowanie kryterium EDC.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature Selection in High Dimensional Regression Problem
Selekcja zmiennych dla regresji w przypadku dużego wymiaru przestrzeni cech
Autorzy:
Kubus, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/904460.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
feature selection
filters
embedded methods
high dimension
Opis:
There are three main approaches to feature selection problem considered in statistical and machine learning literature: filters, wrappers and embedded methods. Filters evaluate and exclude some variables before learning a model. Wrappers use learning algorithm for evaluation of the feature subsets and involve search techniques in the feature subset space. Embedded methods use feature selection as an integral part of learning algorithm. When features outnumber examples, filters or embedded methods are recommended. The goal of this paper is to compare popular filters and embedded methods in high dimensional problem. In the simulation study, redundant variables will be included in the artificially generated data.
Metody selekcji zmiennych dyskutowane obecnie w literaturze dzielone są na trzy główne podejścia: dobór zmiennych dokonywany przed etapem budowy modelu, przeszukiwanie przestrzeni cech i selekcja zmiennych na podstawie oceny jakości modelu oraz metody z wbudowanym mechanizmem selekcji zmiennych. W przypadku, gdy liczba zmiennych jest większa od liczby obserwacji rekomendowane są głównie podejścia pierwsze lub trzecie. Celem artykułu jest porównanie wybranych metod reprezentujących te podejścia w przypadku dużego wymiaru przestrzeni cech. W przeprowadzonych symulacjach, do sztucznie generowanych danych włączano zmienne skorelowane.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 286
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature selection based on linear separability and a CPL criterion function
Autorzy:
Bobrowski, L.
Powiązania:
https://bibliotekanauki.pl/articles/1965821.pdf
Data publikacji:
2004
Wydawca:
Politechnika Gdańska
Tematy:
linear separability
feature selection
CPL criterion function
Opis:
Linear separability of data sets is one of the basic concepts in the theory of neural networks and pattern recognition. Data sets are often linearly separable because of their high dimensionality. Such is the case of genomic data, in which a small number of cases is represented in a space with extremely high dimensionality. An evaluation of linear separability of two data sets can be combined with feature selection and carried out through minimisation of a convex and piecewise-linear (CPL) criterion function. The perceptron criterion function belongs to the CPL family. The basis exchange algorithms allow us to find minimal values of CPL functions efficiently, even in the case of large, multidimensional data sets.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2004, 8, 2; 183-192
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of nature-inspired algorithms for text feature selection
Autorzy:
Çoban, Önder
Powiązania:
https://bibliotekanauki.pl/articles/27312909.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
nature-inspired algorithms
feature selection
text categorization
Opis:
This paper provides a comprehensive assessment of basic feature selection (FS) methods that have originated from nature-inspired (NI) meta-heuristics; two well-known filter-based FS methods are also included for comparison. The performances of the considered methods are compared on four balanced highdimensional and real-world text data sets regarding the accuracy, the number of selected features, and computation time. This study differs from existing studies in terms of the extent of experimental analyses that were performed under different circumstances where the classifier, feature model, and term-weighting scheme were different. The results of the extensive experiments indicated that basic NI algorithms produce slightly different results than filter-based methods for the text FS problem. However, filter-based methods often provide better results by using lower numbers of features and computation times.
Źródło:
Computer Science; 2022, 23 (2); 179--204
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature selection using CPL criterion functions
Selekcja cech z wykorzystaniem funkcji kryterialnych typu CPL
Autorzy:
Łukaszuk, T.
Powiązania:
https://bibliotekanauki.pl/articles/341091.pdf
Data publikacji:
2009
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
selekcja cech
funkcja kryterialna typu CPL
konkurs NIPS2003 Feature
feature selection
CPL criterion function
NIPS2003 Feature Selection Challenge
Opis:
Redukcja wymiarowości zbioru cech jest często używanym wstępnym krokiem przetwarzania danych stosowanym przy rozpoznawaniu wzorców i klasyfikacji. Jest ona szczególnie istotna kiedy mała liczba obserwacji jest reprezentowana w wysoko wymiarowej przestrzeni cech. W artykule rozważana jest metoda selekcji cech opierająca się na minimalizacji specjalnej funkcji kryterialnej (wypukłej i odcinkowo-liniowej - CPL). Załączono także porównanie wyników eksperymentów uzyskanych za pomoc ą opisanej metody z wynikami metod uczestników konkursu NIPS2003 Feature Selection Challenge.
Dimensionality reduction of a feature set is a common preprocessing step used for pattern recognition and classification applications. It is particularly important when a small number of cases is represented in a highly dimensional feature space. The method of the feature selection based on minimisation of a special criterion function (convex and piecewise-linear - CPL) is considered in the article. A comparison of the experimental results of this method with the results of NIPS2003 Feature Selection Challenge participant’s methods is also included.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2009, 4; 85-95
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Propozycja agregowanego klasyfikatora kNN z selekcją zmiennych
The proposition of the kNN ensemble with feature selection.
Autorzy:
Kubus, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/424859.pdf
Data publikacji:
2016
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
k nearest neighbors
ensemble
feature selection
ReliefF algorithm
Opis:
Aggregated classification trees have gained recognition due to improved stability, and frequently reduced bias. However, the adaptation of this approach to the k nearest neighbors method (kNN), faces some difficulties: the relatively high stability of these classifiers, and an increase of misclassifications when the variables without discrimination power are present in the training set. In this paper we propose aggregated kNN classifier with feature selection. Its classification accuracy has been verified on the real data with added irrelevant variables.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2016, 3 (53); 32-41
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of sparse linear discriminant analysis for prediction of protein-protein interactions
Autorzy:
Stąpor, K.
Fabian, P.
Powiązania:
https://bibliotekanauki.pl/articles/95137.pdf
Data publikacji:
2016
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
sparse discriminant analysis
feature selection
protein-protein interaction
Opis:
To understand the complex cellular mechanisms involved in a biological system, it is necessary to study protein-protein interactions (PPIs) at the molecular level, in which prediction of PPIs plays a significant role. In this paper we propose a new classification approach based on the sparse discriminant analysis [10] to predict obligate (permanent) and non-obligate (transient) protein-protein interactions. The sparse discriminant analysis [10] circumvents the limitations of the classical discriminant analysis [4, 9] in the high dimensional low sample size settings by incorporating inherently the feature selection into the optimization procedure. To characterize properties of protein interaction, we proposed to use the binding free energies. The performance of our proposed classifier is 75% ± 5%.
Źródło:
Information Systems in Management; 2016, 5, 1; 109-118
2084-5537
2544-1728
Pojawia się w:
Information Systems in Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature Selection and Classification Pairwise Combinations for High-dimensional Tumour Biomedical Datasets
Autorzy:
Wosiak, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/1373672.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
feature selection
classification
high-dimensional tumour biomedical datasets
Opis:
This paper concerns classification of high-dimensional yet small sample size biomedical data and feature selection aimed at reducing dimensionality of the microarray data. The research presents a comparison of pairwise combinations of six classification strategies, including decision trees, logistic model trees, Bayes network, Naive Bayes, k-nearest neighbours and sequential minimal optimization algorithm for training support vector machines, as well as seven attribute selection methods: Correlation-based Feature Selection, chi-squared, information gain, gain ratio, symmetrical uncertainty, ReliefF and SVM-RFE (Support Vector Machine-Recursive Feature Elimination). In this paper, SVMRFE feature selection technique combined with SMO classifier has demonstrated its potential ability to accurately and efficiently classify both binary and multiclass high-dimensional sets of tumour specimens.
Źródło:
Schedae Informaticae; 2015, 24; 53-62
0860-0295
2083-8476
Pojawia się w:
Schedae Informaticae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of cardiotocogram signal feature selection method on fetal state assessment efficacy
Autorzy:
Jeżewski, M.
Czabański, R.
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/333440.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
cardiotocography
classification
feature selection
kardiotokografia
klasyfikacja
selekcja cech
Opis:
Cardiotocographic (CTG) monitoring is a method of assessing fetal state. Since visual analysis of CTG signal is difficult, methods of automated qualitative fetal state evaluation on the basis of the quantitative description of the signal are applied. The appropriate selection of learning data influences the quality of the fetal state assessment with computational intelligence methods. In the presented work we examined three different feature selection procedures based on: principal components analysis, receiver operating characteristics and guidelines of International Federation of Gynecology and Obstetrics. To investigate their influence on the fetal state assessment quality the benchmark SisPorto® dataset and the Lagrangian support vector machine were used.
Źródło:
Journal of Medical Informatics & Technologies; 2014, 23; 51-58
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature Selection and Multiple Model Approach in Discriminant Analysis
Dobór zmiennych a podejście wielomodelowe w analizie dyskryminacyjnej
Autorzy:
Gatnar, Eugeniusz
Powiązania:
https://bibliotekanauki.pl/articles/906874.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
tree-based models
aggregation
feature selection
random subspaces
Opis:
Significant improvement of model stability and prediction accuracy in classification and regression can be obtained by using the multiple model approach. In classification multiple models are built on the basis of training subsets (selected from the training set) and combined into an ensemble or a committee. Then the component models (classification trees) determine the predicted class by voting. In this paper some problems of feature selection for ensembles will be discussed. We propose a new correlation-based feature selection method combined with the wrapper approach.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2007, 206
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new hand-movement-based authentication method using feature importance selection with the hotelling’s statistic
Autorzy:
Doroz, Rafal
Wrobel, Krzysztof
Porwik, Piotr
Orczyk, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2147116.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
biometrics
person authentication
feature selection
Hotelling’s statistic
Opis:
The growing amount of collected and processed data means that there is a need to control access to these resources. Very often, this type of control is carried out on the basis of biometric analysis. The article proposes a new user authentication method based on a spatial analysis of the movement of the finger’s position. This movement creates a sequence of data that is registered by a motion recording device. The presented approach combines spatial analysis of the position of all fingers at the time. The proposed method is able to use the specific, often different movements of fingers of each user. The experimental results confirm the effectiveness of the method in biometric applications. In this paper, we also introduce an effective method of feature selection, based on the Hotelling T2 statistic. This approach allows selecting the best distinctive features of each object from a set of all objects in the database. It is possible thanks to the appropriate preparation of the input data.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 1; 41--59
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brain-computer interface as measurement and control system The review paper
Autorzy:
Rak, R. J.
Kołodziej, M.
Majkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/221747.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
EEG
brain-computer interface
feature extraction
feature selection
measurement and control
Opis:
In the last decade of the XX-th century, several academic centers have launched intensive research programs on the brain-computer interface (BCI). The current state of research allows to use certain properties of electromagnetic waves (brain activity) produced by brain neurons, measured using electroencephalographic techniques (EEG recording involves reading from electrodes attached to the scalp - the non-invasive method - or with electrodes implanted directly into the cerebral cortex - the invasive method). A BCI system reads the user's "intentions" by decoding certain features of the EEG signal. Those features are then classified and "translated" (on-line) into commands used to control a computer, prosthesis, wheelchair or other device. In this article, the authors try to show that the BCI is a typical example of a measurement and control unit.
Źródło:
Metrology and Measurement Systems; 2012, 19, 3; 427-444
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies