Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Feature selection based on linear separability and a CPL criterion function

Tytuł:
Feature selection based on linear separability and a CPL criterion function
Autorzy:
Bobrowski, L.
Powiązania:
https://bibliotekanauki.pl/articles/1965821.pdf
Data publikacji:
2004
Wydawca:
Politechnika Gdańska
Tematy:
linear separability
feature selection
CPL criterion function
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2004, 8, 2; 183-192
1428-6394
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Linear separability of data sets is one of the basic concepts in the theory of neural networks and pattern recognition. Data sets are often linearly separable because of their high dimensionality. Such is the case of genomic data, in which a small number of cases is represented in a space with extremely high dimensionality. An evaluation of linear separability of two data sets can be combined with feature selection and carried out through minimisation of a convex and piecewise-linear (CPL) criterion function. The perceptron criterion function belongs to the CPL family. The basis exchange algorithms allow us to find minimal values of CPL functions efficiently, even in the case of large, multidimensional data sets.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies