Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "subcubic graphs" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Star Coloring of Subcubic Graphs
Autorzy:
Karthick, T.
Subramanian, C.R.
Powiązania:
https://bibliotekanauki.pl/articles/30146582.pdf
Data publikacji:
2013-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex coloring
star coloring
subcubic graphs
Opis:
A star coloring of an undirected graph G is a coloring of the vertices of G such that (i) no two adjacent vertices receive the same color, and (ii) no path on 4 vertices is bi-colored. The star chromatic number of G, χs(G), is the minimum number of colors needed to star color G. In this paper, we show that if a graph G is either non-regular subcubic or cubic with girth at least 6, then χs(G) ≤ 6, and the bound can be realized in linear time.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 373-385
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hereditary Equality of Domination and Exponential Domination in Subcubic Graphs
Autorzy:
Chen, Xue-Gang
Wang, Yu-Feng
Wu, Xiao-Fei
Powiązania:
https://bibliotekanauki.pl/articles/32324524.pdf
Data publikacji:
2021-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
dominating set
exponential dominating set
subcubic graphs
Opis:
Let γ(G) and γe(G) denote the domination number and exponential domination number of graph G, respectively. Henning et al., in [Hereditary equality of domination and exponential domination, Discuss. Math. Graph Theory 38 (2018) 275–285] gave a conjecture: There is a finite set ℱ of graphs such that a graph G satisfies (H) = γe(H) for every induced subgraph H of G if and only if G is ℱ-free. In this paper, we study the conjecture for subcubic graphs. We characterize the class ℱ by minimal forbidden induced subgraphs and prove that the conjecture holds for subcubic graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1067-1075
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On locally irregular decompositions of subcubic graphs
Autorzy:
Baudon, O.
Bensmail, J.
Hocquard, H.
Senhaji, M.
Sopena, E.
Powiązania:
https://bibliotekanauki.pl/articles/254905.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
locally irregular edge-colouring irregular chromatic index
subcubic graphs
Opis:
A graph G is locally irregular if every two adjacent vertices of G have different degrees. A locally irregular decomposition of G is a partition E1,.. . , Ek of E(G) such that each G[Ei] is locally irregular. Not all graphs admit locally irregular decompositions, but for those who are decomposable, in that sense, it was conjectured by Baudon, Bensmail, Przybyło and Woźniak that they decompose into at most 3 locally irregular graphs. Towards that conjecture, it was recently proved by Bensmail, Merker and Thomassen that every decomposable graph decomposes into at most 328 locally irregular graphs. We here focus on locally irregular decompositions of subcubic graphs, which form an important family of graphs in this context, as all non-decomposable graphs are subcubic. As a main result, we prove that decomposable subcubic graphs decompose into at most 5 locally irregular graphs, and only at most 4 when the maximum average degree is less than 12/5. We then consider weaker decompositions, where subgraphs can also include regular connected components, and prove the relaxations of the conjecture above for subcubic graphs.
Źródło:
Opuscula Mathematica; 2018, 38, 6; 795-817
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Incidence Coloring of Complete Multipartite and Semicubic Bipartite Graphs
Autorzy:
Janczewski, Robert
Małafiejski, Michał
Małafiejska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/31342434.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
incidence coloring
complete multipartite graphs
semicubic graphs
subcubic graphs
-completeness
L (1,1)-labelling
Opis:
In the paper, we show that the incidence chromatic number $ \chi_i $ of a complete $k$-partite graph is at most $ \Delta + 2 $ (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to $ \Delta + 1 $ if and only if the smallest part has only one vertex (i.e., $ \Delta = n − 1 $). Formally, for a complete k-partite graph $ G = K_{r_1,r_2,...,r_k} $ with the size of the smallest part equal to $ r_1 \ge 1 $ we have $$ \chi_i (G)= \begin{cases} \Delta(G)+1 & \text { if } r_1=1, \\ \Delta(G)+2 & \text { if } r_1>1. \end{cases} $$ In the paper we prove that the incidence 4-coloring problem for semicubic bipartite graphs is \( \mathcal{NP} \)-complete, thus we prove also the \( \mathcal{NP} \)-completeness of L(1, 1)-labeling problem for semicubic bipartite graphs. Moreover, we observe that the incidence 4-coloring problem is \( \mathcal{NP} \)-complete for cubic graphs, which was proved in the paper [12] (in terms of generalized dominating sets).
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 107-119
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies